[ 1 ] 朱幸辉, 周勇. 基于卷积神经网络的番茄叶片病斑识别仿真[J]. 计算机仿真, 2021, 38(7): 481-485.
Zhu Xinghui, Zhou Yong. Simulation of tomato leaf patch recognition based on convolutional neural network [J]. Computer Simulation, 2021, 38(7): 481-485.
[ 2 ] 王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277.
[ 3 ] 孔建磊, 金学波, 陶治, 等. 基于多流高斯概率融合网络的病虫害细粒度识别[J]. 农业工程学报, 2020, 36(13): 148-157.
Kong Jianlei, Jin Xuebo, Tao Zhi, et al. Fine‑grained recognition of diseases and pests based on multi‑stream gaussian probability fusion network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 148-157.
[ 4 ] 徐振南, 王建坤, 胡益嘉, 等. 基于MobileNetV3的马铃薯病害识别[J]. 江苏农业科学, 2022, 50(10): 176-182.
[ 5 ] Wu Q, Chen Y, Meng J. Dcgan‑based data augmentation for tomato leaf disease identification [J]. IEEE Access, 2020, 8: 98716-98728.
[ 6 ] 徐畅, 丁俊琦, 赵聃桐, 等. 基于LightGBM和处方数据的番茄病害诊断方法[J]. 农业机械学报, 2022, 53(9): 286-294.
Xu Chang, Ding Junqi, Zhao Dantong, et al. Tomato disease diagnosis method based on lightgbm and prescription data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 286-294.
[ 7 ] 黄志豪. 番茄病害图像数据库构建方法研究[D]. 广州: 华南农业大学, 2016.
[ 8 ] Hughes D, Salathé M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. arXiv Preprint arXiv: 1511. 08060, 2015.
[ 9 ] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[10] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks [C]. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323.
[11] Lin M, Chen Q, Yan S. Network in network [J]. arXiv Preprint arXiv: 1312. 4400, 2013.
[12] Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch [C]. 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017.
[13] Loshchilov I, Hutter F. SGDR: Stochastic gradient descent with warm restarts [J]. arXiv Preprint arXiv: 1608. 03983, 2016.
[14] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25.
[15] Simonyan K, Zisserman A. Very deep convolutional networks for large‑scale image recognition [J]. arXiv Preprint arXiv: 1409. 1556, 2014.
[16] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[17] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[18] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[19] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[20] 汤文亮, 黄梓锋. 基于知识蒸馏的轻量级番茄叶部病害识别模型[J]. 江苏农业学报, 2021, 37(3): 570-578.
|