English

中国农机化学报

中国农机化学报 ›› 2022, Vol. 43 ›› Issue (9): 122-130.DOI: 10.13733/j.jcam.issn.20955553.2022.09.017

• 农业智能化研究 • 上一篇    下一篇

基于DA2-YOLOv4算法绿篱识别研究

韦锦1,李正强1,许恩永2,蒙艳玫1,韦和钧1,武豪1   

  1. 1. 广西大学机械工程学院,南宁市,530004; 
    2. 东风柳州汽车有限公司,广西柳州,545005
  • 出版日期:2022-09-15 发布日期:2022-08-16
  • 基金资助:
    国家自然科学基金资助项目(61763001);广西创新驱动发展专项基金资助项目(桂科AA19254019);广西研究生教育创新计划资助项目(YCBZ2020012)

Research on hedge recognition based on DA2-YOLOv4 algorithm

Wei Jin, Li Zhengqiang, Xu Enyong, Meng Yanmei, Wei Hejun, Wu Hao.   

  • Online:2022-09-15 Published:2022-08-16

摘要: 针对车载式绿篱修剪机自动化修剪需要快速、准确识别绿篱的问题,提出一种DA2-YOLOv4绿篱识别算法。提出一种针对性Mosaic数据增强以获得更合理的数据扩充,使训练结果更具鲁棒性;在CSPDarknet53中引入空洞卷积得到D-CSPDarknet53,获得更大感受野,提升准确率和速度;在SPP中引入平均池化得到A-SPP,充分利用信息,使网络更具鲁棒性;删减小目标检测,获得巨大的速度提升;使用Soft-DIOU-NMS算法,提升目标重叠时的识别效果。最后制作绿篱数据集,对改进效果进行测试,并与其他算法进行对比。试验结果表明,DA2-YOLOv4算法mAP达到985%,检测速度达到83.1 FPS,较原始YOLOv4算法分别提高了8.1%和14.9 FPS,而且算法各方面性能均显著优于其他目标检测算法。DA2-YOLOv4完全满足绿篱识别要求,为绿篱修剪行业自动化提供了有力保障。

关键词: 绿篱修剪机, YOLOv4, 绿篱识别, Mosaic数据增强, 空洞卷积, Soft-DIOU-NMS

Abstract: Aiming at the problem that automatic pruning of vehicle mounted hedge trimmer needs to identify hedges quickly and accurately, a DA2-YOLOv4 hedge recognition algorithm is proposed. A targeted Mosaic data enhancement method is proposed to obtain more reasonable data expansion and make the training results more robust. D-CSPDarknet53 is obtained by introducing dilated convolution into CSPDarknet53 to obtain a larger receptive field and improve the accuracy and speed. Average pooling is introduced into SPP to obtain A-SPP, which makes full use of information to make the network more robust. The small target detection is deleted and the speed is greatly improved. The Soft-DIOU-NMS algorithm is used to improve the recognition effect when targets overlap. Finally, the hedgerow data set is made to test the improvement effect and compare with other algorithms. The experimental results show that the DA2-YOLOv4 algorithm mAP reaches 985%, and the detection speed reaches 83.1 FPS, which is 8.1% and 14.9 FPS higher than the original YOLOv4 algorithm, and the performance of the algorithm is significantly better than other target detection algorithms. The DA2-YOLOv4 fully meets the requirements of hedge identification and provides a strong guarantee for the automation of hedge pruning industry.

Key words:  hedge trimmer, YOLOv4, hedge identification, Mosaic data enhancement, dilated convolution, Soft-DIOU-NMS

中图分类号: