[1] 廖平伟, 张华, 罗俊, 等. 我国甘蔗生产现状及竞争力分析[J]. 中国糖料, 2010(4): 44-45. Liao Pingwei, Zhang Hua, Luo Jun, et al. Present status and potential competition of sugarcane production in China [J]. Sugar Crops of China, 2010(4): 44-45. [2] 曾芳芳, 朱朝枝, 郑传芳. 产业融合视域下甘蔗产业发展研究——基于广西甘蔗主产区数据的分析[J]. 黑龙江八一农垦大学学报, 2020, 32(5): 121-128. Zeng Fangfang, Zhu Chaozhi, Zheng Chuanfang. Study on sugarcane industry development from the perspective of industry convergence—based on the data of main sugarcane producing region in Guangxi [J]. Journal of Heilongjiang Bayi Agricultural University, 2020, 32(5): 121-128. [3] 王丽娉. 甘蔗生产全程机械化作业农艺与农机配套规划方案[J]. 农机质量与监督, 2017(1): 32-34, 29. [4] 农宏亮, 曾伯胜, 范雨杭. 甘蔗中耕施肥培土技术及发展趋势分析[J]. 广西农业机械化, 2017(3): 10-13. [5] 杨云福, 王华准, 汤瑞学, 等. 3ZSP-2型甘蔗中耕施肥培土机的使用调整与维护保养[J]. 农机使用与维修, 2019(12): 8-10. Yang Yunfu, Wang Huazhun, Tang Ruixue, et al. Adjustment and maintenance of 3ZSP-2 sugarcane cultivator-cum-fertilizer-applicator [J]. Agricultural Mechanization Using & Maintenance, 2019(12): 8-10. [6] 吕美巧, 刘丽敏, 吴玉. V型深沟甘蔗中耕施肥起垄培土机的研究设计[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 251-255. Lü Meiqiao, Liu Limin, Wu Yu. Research and design of V-shaped deep trench sugarcane cultivating machine [J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2019, 45(2): 251-255. [7] 陈晓. 久菱牌3ZP-0.8型甘蔗中耕培土机的研发[J]. 广西农业机械化, 2010(4): 28-30. [8] 黄敞, 刘海滨, 王迎, 等. 甘蔗中耕施肥机发展探讨[J]. 农业装备与车辆工程, 2014, 52(11): 14-17. Huang Chang, Liu Haibin, Wang Ying, et al. Study on development of sugarcane intertillage fertilizing machine [J]. Agricultural Equipment & Vehicle Engineering, 2014, 52(11): 14-17. [9] 农浩智, 农冠松. 不同甘蔗行距对产量的影响[J]. 广西蔗糖, 1998(1): 10-14. Nong Haozhi, Nong Guansong. The effect of different row distance to sugarcane yield [J]. Guangxi Sugar Industry, 1998(1): 10-14. [10] Shin H C, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298. [11] Dhakal N, Zihan Z U A, Elseifi M A, et al. Surface identification of top-down, bottom-up, and cement-treated reflective cracks using convolutional neural network and artificial neural networks [J]. Journal of Transportation Engineering Part B Pavements, 2020, 147(1): 04020080. [12] Li Q, Zhao J, Zhang Y, et al. Imaging reconstruction through strongly scattering media by using convolutional neural networks [J]. Optics Communications, 2020, 477(1): 126341. [13] Ren X, Kai C, Yang X, et al. A new unsupervised convolutional neural network model for Chinese scene text detection [C]. 2015 IEEE China Summit and International Conference on Signal and Information Processing (China SIP). IEEE, 2015. [14] Atsushi T, Tetsuya T, Yuka K, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks [J]. BioMed Research International, 2017: 1-6. [15] F Milletari, Navab N, Ahmadi S A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation [C]. 2016 Fourth International Conference on 3D Vision (3DV). IEEE, 2016. [16] Liu J, Zhang R, Han G, et al. Video action recognition with visual privacy protection based on compressed sensing [J]. Journal of Systems Architecture, 2020, 113(9): 101882. [17] Caltagirone L, Scheidegger S, Svensson L, et al. Fast LIDAR-based road detection using fully convolutional neural networks [C]. 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017. [18] 杨文佳, 朱海龙, 刘靖宇. 基于卷积神经网络的天气现象识别方法研究[J]. 智能计算机与应用, 2019, 9(6): 214-216. Yang Wenjia, Zhu Hailong, Liu Jingyu. Research of weather phenomena recognition method based on CNN [J]. Intelligent Computer and Applications, 2019, 9(6): 214-216. [19] 张翠平, 苏光大. 人脸识别技术综述[J]. 中国图象图形学报, 2000(11): 7-16. Zhang Cuiping, Su Guangda. Human face recognition: A survey [J]. Journal of Image and Graphics, 2000(11): 7-16. [20] 阮有兵, 徐海黎, 万旭, 等. 适用于嵌入式平台的E-YOLO人脸检测网络研究[J]. 计算机应用与软件, 2020, 37(2): 147-151. Ruan Youbing, Xu Haili, Wan Xu, et al. E-YOLO face detection network for embedded platform [J]. Computer Applications and Software, 2020, 37(2): 147-151. [21] 王兵, 乐红霞, 李文璟, 等. 改进YOLO轻量化网络的口罩检测算法[J]. 计算机工程与应用, 2021, 57(8): 62-69. Wang Bing, Le Hongxia, Li Wenjing, et al. Mask detection algorithm based on improved YOLO lightweight network [J]. Computer Engineering and Applications, 2021, 57(8): 62-69. [22] 汪京京, 张武, 刘连忠, 等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学, 2014, 36(7): 1363-1370. Wang Jingjing, Zhang Wu, Liu Lianzhong, at al. Summary of crop diseases and pests image recognition technology [J]. Computer Engineering & Science, 2014, 36(7): 1363-1370. [23] 陈旭君, 王承祥, 朱德泉, 等. 基于YOLO卷积神经网络的水稻秧苗行线检测[J]. 江苏农业学报, 2020, 36(4): 930-935. [24] 朱永宁, 周望, 杨洋, 等. 基于Faster R-CNN的枸杞开花期与果实成熟期识别技术[J]. 中国农业气象, 2020, 41(10): 668-677. Zhu Yongning, Zhou Wang, Yang Yang, et al. Automatic identification technology of lyceum barbarum flowering period and fruit ripening period based on faster R-CNN [J]. Chinese Journal of Agrometeorology, 2020, 41(10): 668-677. [25] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]. Computer Vision & Pattern Recognition. IEEE, 2016. [26] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint, 2020. [27] Redmon J. Farhadi A. YOLOv3: An incremental improvement [R]. arXiv, 2018. [28] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000(1): 36-46. Zhang Xuegong.Introduction to statistical learning theory and support vector machines [J]. Acta Automatica Sinica, 2000(1): 36-46. [29] 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124, 128. Feng Guohe. Parameter optimizing for support vector machines classification [J].Computer Engineering and Applications, 2011, 47(3): 123-124, 128.
|