English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (10): 281-288.DOI: 10.13733/j.jcam.issn.2095-5553.2024.10.041

• 农业智能化研究 • 上一篇    下一篇

结合注意力机制与双向特征融合的叶片病害检测方法

马晓慧1,2,王骥1,2,覃嘉俊2,3   

  1. (1. 广东海洋大学电子与信息工程学院,广东湛江,524088; 2. 广东省智慧海洋传感器及其装备工程
    技术研究中心,广东湛江,524088; 3. 广东海洋大学数学与计算机学院,广东湛江,524088)
  • 出版日期:2024-10-15 发布日期:2024-09-30
  • 基金资助:
    广东省普通高校重点领域专项(新一代信息技术)(2020ZDZX3008)

Leaf disease detection method combining attention mechanism and bidirectional feature fusion

Ma Xiaohui1, 2, Wang Ji1, 2, Qin Jiajun2, 3   

  1. (1. College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, China; 
    2. Guangdong Engineering and Technology Research Center of Intelligent Marine Sensor and Its Equipment, Zhanjiang, 
    524088, China; 3. College of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China) 
  • Online:2024-10-15 Published:2024-09-30

摘要: 传统的Mask R-CNN网络检测目标时会出现特征丢失和特征混淆的情况,且对于密集的小目标容易出现漏检、错检等问题。针对这一问题,提出一种结合注意力机制和双向特征融合的叶片病害检测方法。首先,构建数据集时给叶片图片加入高斯噪声斯和椒盐噪声两种人工噪声,模仿自然界的复杂噪声,提升数据的多样性;其次,结合PAFPN结构与CBAM注意力机制,生成的CBAM-PAFPN结构,替代Mask R-CNN网络FPN结构,优化Mask R-CNN网络的特征提取方式;最后,将原网络NMS筛选候选框的方式替换为Soft-NMS。结果表明:对于无噪声的数据集,mAP值提升0.46%,Recall值提升2.24%;平均错检率为1.34%,降低3.28%,约为原网络的1/4,平均漏检率为0.12%,降低2.19%,约为原网络的1/20。改进后的网络在检测和定位精度上都有所提升,为有效检测不同大小、不同密集度的叶片病害提供技术支持。

关键词: 叶片病害, CBAM, 双向特征融合, Mask R-CNN, NMS

Abstract: When the traditional Mask R-CNN network detects the target, feature loss and feature confusion will occur, and for the dense small target, it is easy to miss detection, false detection and other problems. In order to solve this problem, this paper proposes a leaf disease detection method combining attention mechanism and bidirectional feature fusion. Firstly, two kinds of artificial noises such as Gaussian noise and salt and pepper noise, were added to the leaf picture during the construction of the data set to imitate the complex noises in nature and improve the diversity of data. Secondly, combining the PAFPN structure with the CBAM attention mechanism, the CBAM-PAFPN structure is generated to replace the FPN structure of Mask R-CNN network and optimize the feature extraction mode of Mask R-CNN network. Finally, replace the original NMS filtering candidate box with Soft-NMS. The experimental results show that for the noiseless data set, mAP value increases by 0.46% and Recall value increases by 2.24%. The average error detection rate is 1.34%, a decrease of 3.28%, about 1/4 of the original network, the average missing detection rate is 0.12%, a decrease of 2.19%, about 1/20 of the original network. The improved network has increased the accuracy of detection and positioning, which provides technical support for the effective detection of leaf diseases of different sizes and densities.

Key words: leaf disease, CBAM, bidirectional feature fusion, Mask R-CNN, NMS

中图分类号: