[ 1 ] 谢泽奇, 张会敏. 基于深度学习算法的农作物灾害预测研究[J]. 现代电子技术, 2021, 44(4): 107-110.
[ 2 ] Chakraborty S, Devi M R, Bhattacharya P M, et al. Plant disease dynamics vis‑a‑vis conservation agriculture [J]. Europe, 2021, 58(4): 221-227.
[ 3 ] 徐胜勇, 彭程里, 陈可, 等. 基于扇环形区域图像分割的小麦秸秆截面参数测量方法[J]. 农业机械学报, 2018, 49(4): 53-59.
Xu Shengyong, Peng Chengli, Chen Ke, et al. Measurement method of wheat stalks cross section parameters based on sector ring region image segmentation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 53-59.
[ 4 ] 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
[ 5 ] 史红栩, 李修华, 李民赞, 等. 基于深度学习的香蕉病害远程诊断系统[J]. 华南农业大学学报, 2020, 41(6): 92-99.
[ 6 ] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325.
[ 7 ] Harakannanavar S S, Rudagi J M, Puranikmath V I, et al. Plant leaf disease detection using computer vision and machine learning algorithms [J]. Global Transitions Proceedings, 2022, 3(1): 305-310.
[ 8 ] Peng H, Li Z, Zhou Z, et al. Weed detection in paddy field using an improved RetinaNet network [J]. Computers and Electronics in Agriculture, 2022, 199: 107179.
[ 9 ] 周品志, 裴悦琨, 魏冉, 等. 基于YOLOv4模型的果园樱桃实时检测研究[J]. 浙江农业学报, 2022, 34(11): 2522-2532.
[10] 孙俊, 钱磊, 朱伟栋, 等. 基于改进RetinaNet的果园复杂环境下苹果检测[J]. 农业工程学报, 2022, 38(15): 314-322.
Sun Jun, Qian Lei, Zhu Weidong, et al. Apple detection in complex orchard environment based on improved RetinaNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 314-322.
[11] Pandian J A, Kumar V D, Geman O, et al. Plant disease detection using deep convolutional neural network [J]. Applied Sciences‑Basel, 2022, 12(14): 114-123.
[12] Selvaraj M G, Vergara A, Ruiz H, et al. AI‑powered banana diseases and pest detection [J]. Plant Methods, 2019, 15(1): 255-262.
[13] Jin X, Sun Y, Che J, et al. A novel deep learning‑based method for detection of weeds in vegetables [J]. Pest Management Science, 2022, 78(5): 161-169.
[14] 孙宝霞, 梁翠晓, 刘凯, 等. 夜间环境下树上柑橘表征缺陷深度学习检测方法[J]. 林业工程学报, 2021(6): 148-155.
[15] Liu T, Li D. Detection method for sweet cherry fruits based on YOLOv4 in the natural environment [J]. Asian Agricultural Research, 2022, 14(1): 66-76.
[16] Zhang K, Wu Q, Chen Y. Detecting soybean leaf disease from synthetic image using multi‑feature fusion faster R-CNN [J]. Computers and Electronics in Agriculture, 2021, 18(3): 325-331.
[17] Lawal O M. YOLOMuskmelon: Quest for fruit detection speed and accuracy using deep learning [J]. IEEE Access, 2021, 9(2): 121-127.
[18] He K, Gkioxari G, Dollar P, et al. Mask R-CNN [J]. IEEE Transactions On Pattern Analysis and Machine Interlligence, 2020, 42(2): 386-397.
[19] Russell B C, Torralba A, Murphy K P, et al. Label me: A database and web‑based tool for image annotation [J]. Interrional Journal of Computer Vision, 2008, 77(1-3): 157-173.
[20] 王凤随, 王启胜, 陈金刚, 等. 基于注意力机制和Soft-NMS的改进Faster R-CNN目标检测算法[J]. 激光与光电子学进展, 2021, 58(24): 405-416.
[21] 曾伟辉, 唐欣, 胡根生, 等. 基于卷积块注意力胶囊网络的小样本水稻害虫识别[J]. 中国农业大学学报, 2022, 27(3): 63-74.
Zeng Weihui, Tang Xin, Hu Gensheng, et al. Rice pests recognition with small number of samples based on CBAM and capsule network [J]. Journal of China Agricultural University, 2022, 27(3): 63-74.
[22] Yang X, Zhang D, Wang Z, et al. Super‑resolution reconstruction of terahertz images based on a deep‑learning network with a residual channel attention mechanism [J]. Applied Optics, 2022, 61(12): 3363-3370.
[23] Wang A, Zhou H, Hu Y, et al. Endogenous spatial attention modulates the magnitude of the colavita visual dominance effect [J]. i-Perception, 2021, 12(4): 20416695211027186.
|