[1] 王志强, 于雪莹, 杨晓婧, 等. 基于WGAN和MCAMobileNet的番茄叶片病害识别[J]. 农业机械学报, 2023, 54(5): 244-252.
Wang Zhiqiang, Yu Xueying, Yang Xiaojing, et al. Tomato leaf diseases recognition based on WGAN and MCAMobileNet [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 244-252.
[2] Thangaraj R, Anandamurugan.S, Pandiyan P, et al. Artificial intelligence in tomato leaf disease detection: A comprehensive review and discussion [J]. Journal of Plant Diseases and Protection, 2022, 129(3): 469-488.
[3] Chen H C, Widodo A M, Wisnujati A, et al. AlexNet convolutional neural network for disease detection and classification of tomato leaf [J]. Electronics, 2022, 11(6): 951.
[4] 帖军, 隆娟娟, 郑禄, 等. 基于SKEfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104-114.
Tie Jun, Long Juanjuan, Zheng Lu, et al, Tomato leaf disease recognition model based on SKEfficientNet [J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(4): 104-114.
[5] 胡志伟, 杨华, 黄济民, 等. 基于注意力残差机制的细粒度番茄病害识别[J]. 华南农业大学学报, 2019, 40(6):124-132.
Hu Zhiwei, Yang Hua, Huang Jimin, et al. Finegrained tomato disease recognition based on attention residual mechanism [J]. Journal of South China Agricultural University, 2019, 40(6): 124-132.
[6] Huang X, Chen A, Zhou G, et al. Tomato leaf disease detection system based on FCSNDPN [J]. Multimedia Tools and Applications, 2023, 82(2): 2121-2144.
[7] 马丽, 周巧黎, 赵丽亚, 等. 基于深度学习的番茄叶片病害分类识别研究[J]. 中国农机化学报, 2023, 44(7): 187-193, 206.
Ma Li, Zhou Qiaoli, Zhao Liya, et al. Classification and recognition of tomato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 187-193, 206.
[8] 蒋清健, 姚勇, 付志军, 等. 基于改进卷积神经网络算法的番茄叶片病害识别[J]. 江苏农业科学, 2022, 50(20):29-34.
Jiang Qingjian, Yao Yong, Fu Zhijun, et al. Tomato leaf disease identification based on improved convolutional neural network algorithm [J]. Jiangsu Agricultural Sciences, 2022, 50(20): 29-34.
[9] 蒋清健, 姚勇, 王亚玲, 等. 基于多尺度卷积神经网络算法的番茄叶片病害识别[J]. 江苏农业科学, 2023, 51(15): 211-216.
Jiang Qingjian, Yao Yong, Wang Yaling, et al. Tomato leaf diseases recognition based on multiscale convolutional neural network [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 211-216.
[10] 陈智超, 汪国强, 李飞, 等. 基于Bi-LSTM与多尺度神经网络模型的番茄病害识别[J]. 江苏农业科学, 2023, 51(15): 194-203.
Chen Zhichao, Wang Guoqiang, Li Fei, et al. Tomato disease identification based on Bi-LSTM and multiscale neural network model [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 194-203.
[11] 刘拥民, 刘翰林, 石婷婷, 等. 一种优化的Swin Transformer番茄叶片病害识别方法[J]. 中国农业大学学报, 2023, 28(4): 80-90.
Liu Yongmin, Liu Hanlin, Shi Tingting, et al. Tomato leaf disease recognition based on an optimized Swin Transformer [J]. Journal of China Agricultural University, 2023, 28(4): 80-90.
[12] 王艳玲, 张宏立, 刘庆飞, 等. 基于迁移学习的番茄叶片病害图像分类[J]. 中国农业大学学报, 2019, 24(6): 124-130.
Wang Yanling, Zhang Hongli, Liu Qingfei, et al. Image classification of tomato leaf diseases based on transfer learning [J]. Journal of China Agricultural University, 2019, 24(6): 124-130.
[13] 罗东升, 周子敬, 王志伟, 等. 改进ACGAN数据增强的番茄叶片病害识别[J]. 太原理工大学学报, 2023, 54(5): 861-868.
Luo Dongsheng, Zhou Zijing, Wang Zhiwei, et al. Tomato leaf disease recognition based on improved ACGAN data enhancement [J]. Journal of Taiyuan University of Technology, 2023, 54(5): 861-868.
[14] Kaur P, Harnal S, Gautam V, et al. An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique [J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105210.
[15] Moussafir M, Chaibi H, Saadane R, et al. Design of efficient techniques for tomato leaf disease detection using genetic algorithmbased and deep neural networks [J]. Plant and Soil, 2022, 479(1): 251-266.
[16] 鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学精密工程, 2021, 29(4): 843-853.
Ju Moran, Luo Haibo, Liu Guangqi, et al. Infrared dim and small target detection network based on spatial attention mechanism [J]. Optics and Precision Engineering, 2021, 29(4): 843-853.
[17] Attallah O. Tomato leaf disease classification via compact convolutional neural networks with transfer learning and feature selection [J]. Horticulturae, 2023, 9(2): 149.
[18] 张善文, 黄文准, 张传雷. 基于环境信息和深度自编码网络的农作物病害预测模型[J]. 江苏农业学报, 2018, 34(2): 288-292.
Zhang Shanwen, Huang Wenzhun, Zhang Chuanlei. Forecasting model of crop disease based on environment information and deep autoencoder network [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(2): 288-292.
[19] 罗仁泽, 王瑞杰, 张可, 等. 残差卷积自编码网络图像去噪方法[J]. 计算机仿真, 2021, 38(5): 455-461.
Luo Renze, Wang Ruijie, Zhang Ke, et al. Image denoising method of residual convolution autoencoder network [J]. Computer Simulation, 2021, 38(5): 455-461.
[20] Cui S, Su Y L, Duan K, et al. Maize leaf disease classification using CBAM and lightweight Auto encoder network [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(6): 7297-7307.
|