[1] Gulhane V A, Gurjar A A. Detection of diseases on cotton leaves and its possible diagnosis [J]. International Journal of Image Processing, 2011, 5(5): 590-598.
[2] 黎振, 陆玲, 熊方康. 基于kmeans分割和迁移学习的番茄病理识别[J]. 江苏农业科学, 2021, 49(12): 156-161.Li Zhen, Lu Ling, Xiong Fangkang. Tomato pathological recognition based on K-means segmentation and transfer learning [J]. Jiangsu Agricultural Sciences, 2021, 49(12): 156-161.
[3] Zhang T, Zhu X K, et al. Deep learning based classification for tomato diseases recognition [J]. IOP Conference Series: Earth and Environmental Science, 2010, 474(3): 032014.
[4] 郭小清, 范涛杰, 舒欣. 基于改进MultiScale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169.
Guo Xiaoqing, Fan Taojie,Shu Xin. Tomato leaf diseases recognition based on improved MultiScale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169.
[5] Zhang Y, Song C, Zhang D. Deep learningbased object detection improvement for tomato disease [J]. IEEE Access, 2020, 8: 56607-56614.
[6] 张宁, 吴华瑞, 韩笑, 等. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报, 2021, 33(7): 1329-1338.Zhang Ning, Wu Huarui, Han Xiao, et al. Tomato disease recognition scheme based on multiscale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338.
[7] Cai Z, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[8] Ren S, He K, Girshick R, et al. Faster R-CNN towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 39(6): 1137-1149.
[9] 王振, 张善文, 赵保平. 基于级联卷积神经网络的作物病害叶片分割[J]. 计算机工程与应用, 2020, 56(15): 242-250.Wang Zhen, Zhang Shanwen, Zhao Baoping. Crop diseases leaf segmentation method based on cascade convolutional neural network [J]. Computer Engineering and Applications, 2020, 56(15): 242-250.
[10] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[11] 岳有军, 田博凯, 王红君, 等. 基于改进Mask RCNN的复杂环境下苹果检测研究[J]. 中国农机化学报, 2019,40(10): 128-134.
Yue Youjun, Tian Bokai, Wang Hongjun, et al. Research on apple detection in complex environment based on improved Mask RCNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 128-134.
[12] 方晨晨, 石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用, 2020, 40(S1): 203-208.Fang Chenchen, Shi Fanhuai. Image recognition of tomato diseases based on improved deep residual network [J]. Journal of Computer Applications, 2020, 40(S1): 203-208.
[13] Qiao S, Chen L C, Yuille A. DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution [C]. 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[14] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [J]. Computer Vision and Pattern Recognition, ArXiv: 1706.05587, 2017.
[15] Pang J, Chen K, Shi J, et al. Libra R-CNN: Towards balanced learning for object detection [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
[16] 何颖, 陈丁号, 彭琳. 基于改进YOLOv5模型的经济林木虫害目标检测算法研究[J]. 中国农机化学报, 2022, 43(4): 106-115.
He Ying, Chen Dinghao, Peng Lin. Analysis of research process on mechanized ginger planting technology based on the patent analysis method [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 106-115.
[17] Hassanien A E, Gaber T, Mokhtar U, et al. An improved moth flame optimization algorithm based on rough sets for tomato diseases detection [J]. Computers and Electronics in Agriculture, 2017, 136: 86-96.
[18] 苏斐, 张泽旭, 赵妍平, 等. 基于轻量化YOLO-v3的绿熟期番茄检测方法[J]. 中国农机化学报, 2022, 43(3): 132-137.
Su Fei, Zhang Zexu, Zhao Yanping, et al. Detection of mature green tomato based on lightweight YOLO-v3 [J].Journal of Chinese Agricultural Mechanization, 2022, 43(3): 132-137.
[19] Ghadimi S, Lan G, Zhang H. Minibatch stochastic approximation methods for nonconvex stochastic composite optimization [J]. Mathematical Programming, 2014.
[20] Hu J, Shen L, Sun G. Squeezeandexcitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8): 2011-2023.
[21] LIN T Y, GOYAL P, Girshick R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42(2): 318-327.
[22] 韩旭, 赵春江, 吴华瑞, 等. 基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法[J]. 农业工程学报, 2021, 37(17): 177-188.
Han Xu, Zhao Chunjiang, Wu Huarui, et al. Image classification method for tomato leaf deficient nutrient elements based on attention mechanism and multiscale feature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 177-188.
|