[1] 李小兰, 孙建生, 梁伟. 构建卷烟工业烟叶原料质量保障体系的思考[J]. 广东农业科学, 2008(11): 142-144.
Li Xiaolan, Sun Jiansheng, Liang Wei. A study on building quality assurance system for industrial tobacco raw materials [J]. Guangdong Agricultural Sciences, 2008(11): 142-144.
[2] 潘周云, 包正元, 柳强, 等. 贵州山区烤烟专业化散烟分级队伍建设的现状与对策[J]. 贵州农业科学, 2017, 45(9): 166-170.
Pan Zhouyun, Bao Zhengyuan, Liu Qiang, et al. Current situation and countermeasures of specialization fluecured tobacco grading team construction in mountainous area, Guizhou [J]. Guizhou Agricultural Sciences, 2017, 45(9): 166-170.
[3] 王树林, 王国英. 烟叶等级质量的提升策略与成效分析[J]. 安徽农业科学, 2017, 45(31): 223-225.
Wang Shulin, Wang Guoying. Strategies and effects of upgrading tobacco grades quality [J]. Journal of Anhui Agricultural Sciences, 2017, 45(31): 223-225.
[4] Maccormac J K M. Online image processing for tobacco grading in Zimbabwe [J]. IEEE, 1993: 327-331.
[5] 张建平, 吴守一, 方如明, 等. 农产品质量的计算机辅助检验与分级(第Ⅱ报)烟叶自动分级模型的建立与训练[J]. 农业工程学报, 1997, 13(4): 184-188.
[6] Zhang F, Zhang X. Classification and quality evaluation of tobacco leaves based on image processing and fuzzy comprehensive evaluation [J]. Sensors, 2011, 11(3): 2369-2384.
[7] 李胜. 烤烟烟叶图像特征提取和质量分级研究[D]. 长沙: 中南大学, 2011.
[8] 袁奎. 烟叶特征的视觉信息表达与分级算法研究[D]. 贵阳: 贵州大学, 2015.
[9] Lecun Y, Bottou L, Bengio Y, et al. Gradientbased learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[10] Thenmozhi K, Reddy U S. Crop pest classification based on deep convolutional neural network and transfer learning [J]. Computers and Electronics in Agriculture, 2019, 164: 104906.
[11] Zhou L B, Huang T, Guan C Y, et al. Realtime detection of cole diseases and insect pests in wireless sensor networks [J]. Journal of Intelligent and Fuzzy Systems, 2019, 37(16): 1-12.
[12] Huang Y P, Wang T H, Basanta H. Using fuzzy mask RCNN model to automatically identify tomato ripeness [J]. IEEE Access, 2020, 8: 207672-207682.
[13] Zhengjun Q, Jian C, Yiying Z, et al. Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network [J]. Applied Sciences, 2018, 8(2): 212.
[14] Inkyu S, Ge Z, D Feras, et al. Deep fruits: A fruit detection system using deep neural networks [J]. Sensors, 2016, 16(8): 1222.
[15] Xi R, Hou J, Lou W. Potato bud detection with improved faster RCNN [J]. Transactions of the ASABE, 2020, 63(3): 557-569.
[16] Hu G, Qian L, Liang D, et al. Selfadversarial training and attention for multitask wheat phenoltyping [J]. Applied Engineering in Agriculture, 2019, 35(6): 1009-1014.
[17] Dasari S K, Prasad V. A novel and proposed comprehensive methodology using deep convolutional neural networks for flue cured tobacco leaves classification [J]. International Journal of Information Technology, 2019, 11(1): 107-117.
[18] 王士鑫. 基于卷积神经网络(CNN)的烤烟烟叶质量分级研究[D]. 昆明: 云南师范大学, 2020.
Wang Shixin. Quality classification of fluecured tobacco leaf based on convolutional neural network (CNN) [D]. Kunming: Yunnan Normal University, 2020.
[19] GB 2635—1992, 烤烟[S].
[20] Jie H, Li S, Gang S, et al. Squeezeandexcitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018: 7132-7141.
[21] Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), 2017: 936-944.
[22] 李青山, 矫海楠, 王传义, 等. 烟叶正背面颜色参数与色素和主要化学成分的关系研究[J]. 江苏农业科学, 2016, 44(8): 332-336.
[23] 张永安, 马彩娟, 刘立博, 等. 不同产地烤烟叶片颜色正反面色差及其对感官评吸质量的影响[J]. 安徽农业科学, 2020, 48(13): 198-201.
Zhang Yongan, Ma Caijuan, Liu Libo, et al. Color deviation of both sides of fluecured tobacco leaves from different areas and its effect on sensory quality [J]. Journal of Anhui Agricultural Sciences, 2020, 48(13): 198-201.
[24] Jia D, Wei D, Socher R, et al. ImageNet: A largescale hierarchical image database [C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), 2009: 248-255.
[25] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), 2016: 770-778.
[26] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. CoRR, 2014, 1409(15): 1556-1563.
[27] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [J]. IEEE, 2016: 2818-2826.
|