[1] 农业农村部办公厅印发《2019年种植业工作要点》[J]. 中国农技推广, 2019, 35(2): 70-73.
[2] 吕金庆, 王鹏榕, 杨晓涵, 等. 舀勺式马铃薯播种机排种器清种装置设计与试验[J]. 农业机械学报, 2019, 50(7): 51-60.
Lü Jinqing, Wang Pengrong, Yang Xiaohan, et al. Design and experiment of seedclearing device for cupbelt type patato seedmetering device [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 51-60.
[3] 吕金庆, 于佳钰, 冯雪, 等. 辊式马铃薯分级机设计与试验[J]. 农业机械学报, 2019, 50(2): 323-332.
Lü Jinqing, Yu Jiayu, Feng Xue, et al. Design and experiment of roller potato grading machine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 323-332.
[4] 李玉华, 李天华, 牛子孺, 等. 基于色饱和度三维几何特征的马铃薯芽眼识别[J]. 农业工程学报, 2018, 34(24): 158-164.
Li Yuhua, Li Tianhua, Niu Ziru, et al. Potato bud eyes recognition based on threedimensional geometric features of color saturation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 158-164.
[5] Xi Rui, Hou Jialin, Li Licheng. Fast segmentation on potato buds with chaos optimizationbased Kmeans algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 190-196.
[6] 李尚平, 李向辉, 张可, 等. 改进YOLOv3网络提高甘蔗茎节实时动态识别效率[J]. 农业工程学报, 2019, 35(23): 185-191.
Li Shangping, Li Xianghui, Zhang Ke, et al. Increasing the realtime dynamic identification efficiency of sugarcane nodes by improved YOLOv3 network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 185-191.
[7] 金耀, 何秀文, 万世主, 等. 基于YOLO v3的生猪个体识别方法[J]. 中国农机化学报, 2021, 42(2): 178-183.
Jin Yao, He Xiuwen, Wan Shizhu, et al. Individual pig identification method based on YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 178-183.
[8] 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2): 237-244.
Liu Xiaogang, Fan Cheng, Li Jianian, et al. Identification method of strawberry based on convolutional netural network [J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(2): 237-244.
[9] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[10] He Kaiming, Gkioxari G, Dollár P, et al. Mask R-CNN [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017.
[11] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37.
[12] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[13] Redmon J, Farhadi A. YOLO9000: better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[14] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. IEEE Trans. Pattern Anal, 2018, 15: 1125-1131.
[15] 席芮, 姜凯, 张万枝, 等. 基于改进Faster R-CNN的马铃薯芽眼识别方法[J]. 农业机械学报, 2020, 51(4): 216-223.
Xi Rui, Jiang Kai, Zhang Wanzhi, et al. Recognition method for potato buds based on improved Faster R-CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 216-223.
[16] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
|