[1] 姚惠源, 方辉. 色选技术在粮食和农产品精加工领域的应用及发展趋势[J]. 粮食与食品工业, 2011(2): 4-6.
[2] 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162.
Yang Guoguo, Bao Yidan, Liu Ziyi. Localization and recognition of pests in tea plantation based on image saliency analysis and Convolutional Neural Network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162.
[3] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215.
Sun Jun, Tan Wenjun, Mao Hanping, et al. Recognition of multiple plant leaf diseases based on improved Convolutional Neural Network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215.
[4] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176.
Huang Shuangping, Sun Chao, Qi Long, et al. Rice panicle blast identification method based on deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 169-176.
[5] 周云成, 许童羽, 郑伟, 等.基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报,2017, 33(15): 219-226.
Zhou Yuncheng, Xu Tongyu, Zheng Wei, et al. Classification and recognition approaches of tomato main organs based on DCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 219-226.
[6] 赵志衡, 宋欢, 朱江波, 等. 基于卷积神经网络的花生籽粒完整性识别算法及应用[J]. 农业工程学报, 2018, 34(21): 195-201.
Zhao Zhiheng, Song Huan, Zhu Jiangbo, et al. Identification algorithm and application of peanut kernel integrity based on convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 195-201.
[7] 刘星星, 王烁烁, 徐丽明, 等. 基于OpenCV的动态葡萄干色泽实时识别[J]. 农业工程学报, 2019, 35(23):177-184.
Liu Xingxing, Wang Shuoshuo, Xu Liming, et al. Real time color recognition of moving raisin based on OpenCV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 177-184.
[8] Khodaei, Jalal, Banakar, et al. Machine vision system for grading of dried figs [J]. Computers and Electronics in Agriculture, 2015, 119: 158-165.
[9] 万芳. 二维提升小波算法在实时图像处理中的应用及FPGA实现[J]. 激光杂志, 2015, 36(8): 36-40.
Wan Fang. Application of twodimensional lifting wavelet algorithm in real time image processing and its achieve in FPGA [J]. Laser Journal, 2015, 36(8): 36-40.
[10] 季亚男, 刘光远, 陈通, 等. 运动模糊图像经典复原算法[J]. 西南大学学报(自然科学版), 2018, 40(8): 162-171.
Ji Yanan, Liu Guangyuan, Chen Tong, et al. Classic restoration algorithm of motion blurred images [J]. Journal of Southwest University (Natural Science), 2018, 40(8): 162-171.
[11] 王海菊, 谭常玉, 王坤林, 等. 自适应高斯滤波图像去噪算法[J]. 福建电脑, 2017, 33(11):5-6.
[12] 赵高长, 张磊, 武风波. 改进的中值滤波算法在图像去噪中的应用[J]. 应用光学, 2011, 32(4): 678-682.
Zhao Gaochang, Zhang Lei, Wu Fengbo. Application of improved median filtering algorithm in image denoising [J]. Journal of Applied Optics, 2011, 32(4): 678-682.
[13] 黄文笔, 战荫伟, 陈家益, 等. 改进的自适应中值滤波算法[J]. 计算机系统应用, 2018, 27(10): 183-188.
Huang Wenbi, Zhan Yinwei, Chen Jiayi, et al. Improved adaptive median filter algorithm [J]. Computer System & Application, 2018, 27(10): 183-188.
[14] 肖祥元, 景文博, 赵海丽. 基于峰值信噪比改进的图像增强算法[J]. 长春理工大学学报(自然科学版), 2017, 40(4): 83-86, 92.
Xiao Xiangyuan, Jing Wenbo, Zhao Haili. An improved image enhancement algorithm based on the PeakSignal to noise ratio [J]. Journal of Changchun University of Science and Technology, 2017, 40(4): 83-86. 92.
[15] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks [J]. Advances in neural information processing systems, 2012, 25(2): 1097-1105.
[16] 常亮, 邓小明, 周明全. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 9(42): 1302-1303.
Chang Liang, Deng Xiaoming, Zhou Mingquan. Convolutional neural networks in image understanding [J]. Acta Automatica Sinica, 2016, 9(42): 1302-1303.
[17] 刘园园. 基于卷积神经网络的花卉图像分类算法的研究[D]. 北京: 华北电力大学, 2017.
Liu Yuanyuan. Research on flower image classification algorithm based on convolutional neural network [D]. Beijing: North China Electric Power University, 2017.
[18] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[19] 周安众, 罗可. 一种卷积神经网络的稀疏性Dropout正则化方法[J]. 小型微型计算机系统, 2018, 39(8): 1674-1679.
Zhou Anzhong, Luo Ke. Sparse Dropout regularization method for convolutional neural networks [J]. Journal of Chinese Computer Systems, 2018, 39(8): 1674-1679.
[20] 余烨, 傅云翔, 杨昌东, 等. 基于FR-ResNet的车辆型号精细识别研究[J]. 自动化学报, 2021, 47(5): 1125-1136.
Yu Ye, Fu Yunxiang, Yang Changdong, et al. Finegrained car model recognition based on FR-ResNet [J]. Acta Automatica Sinica, 2021, 47(5): 1125-1136.
[21] 张婷, 李玉鑑, 胡海鹤, 等. 基于跨连卷积神经网络的性别分类模型[J]. 自动化学报, 2016, 42(6): 858-865.
Zhang Ting, Li YuJian, Hu Haihe, et al. A gender classification model based on crossconnected convolutional neural networks [J]. Acta Automatica Sinica, 2016, 42(6): 858-865.
[22] 戚超, 左毅, 陈哲琪, 等. 基于改进VGG16的大米加工精度分级方法研究[J]. 农业机械学报, 2021, 52(5): 301-307.
Qi Chao, Zuo Yi, Chen Zheqi, et al. Rice processing accuracy classification method based on improved VGG16 convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 301-307.
[23] 黄家才, 舒奇, 朱晓春, 等. 基于迁移学习的机器人视觉识别与分拣策略[J]. 计算机工程与应用, 2019, 55(8): 232-237.
Huang Jiacai, Shu Qi, Zhu Xiaochun, et al. Robot vision recognition and sorting strategy based on transfer learning [J]. Computer Engineering and Applications, 2019, 55(8): 232-237.
[24] 石祥滨, 房雪键, 张德园, 等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报. 2016, 28(1): 167-173, 182.
Shi Xiangbin, Fang Xuejian, Zhang Deyuan, et al. Image classification based on mixed deep learning model transfer learning [J]. Journal of System Simulation, 2016, 28(1): 167-173, 182.
[25] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
Zhuang Fuzhen, Luo Ping, He Qing, et al. Survey on transfer learning research [J]. Journal of Software, 2015, 26(1): 26-39.
[26] 郑泽宇, 顾思宇. TensorFlow:实战Google深度学习框架[M]. 北京: 电子工业出版社, 2017.
[27] 庄健, 张晶, 许钰雯. 深度学习图像识别技术: 基于TensorFlow Object Detection API和OpenVINOTM工具套件[M]. 北京: 机械工业出版社, 2020.
|