[1] 商务部市场运行和消费促进司中国国际电子商务中心. 2019年中国茧丝绸行业发展报告[EB/OL]. https://jscscyxs.mofcom.gov.cn/jscFile/jsc/_news/2020/11/1605228816133.html, 2020-11-13.
[2] 徐安英, 钱荷英, 孙平江, 等. 家蚕抗血液型脓病新品种华康3号的育成[J]. 蚕业科学, 2019, 45(2): 201-211.
Xu Anying, Qian Heying, Sun Pingjiang, et al. Breeding of a new silkworm variety Huakang 3 with resistance to bombyx mori nucleopolyhedrosis [J]. Acta Sericologica Sinica, 2019, 45(2): 201-211.
[3] 岳冬梅, 王林美, 李佩佩, 等. 柞蚕微孢子虫对不同昆虫细胞的感染特性分析[J]. 蚕业科学, 2019, 45(5): 699-705.
Yue Dongmei, Wang Linmei, Li Peipei, et al. Infection characteristics of nosema pernyi to different insect cells [J]. Acta Sericologica Sinica, 2019, 45(5): 699-705.
[4] 李雪云. 规模化养蚕中蚕病的综合防治[A]. 中国蚕学会. 中国蚕学会商品性小蚕饲养规程和蚕病防控学术研讨会论文集[C]. 中国蚕学会: 中国蚕学会, 2010: 4.
[5] 胡光荣. 智能调控单闭环式大蚕全自动养蚕机[P]. 中国专利: 112021264A, 2020-12-04.
[6] 许良凤, 徐小兵, 胡敏, 等. 基于多分类器融合的玉米叶部病害识别[J]. 农业工程学报, 2015, 31(14): 194-201, 315.
Xu Liangfeng, Xu Xiaobing, Hu Min, et al. Corn leaf disease identification based on multiple classifiers fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 194-201, 315.
[7] 田有文, 李天来, 李成华, 等. 基于支持向量机的葡萄病害图像识别方法[J]. 农业工程学报, 2007, 23(6): 175-180.
Tian Youwen, Li Tiancheng, Li Chenghua, et al. Method for recognition of grape disease based on support vector machine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(6): 175-180.
[8] 胡秋霞. 基于图像分析的植物叶部病害识别方法研究[D]. 杨凌: 西北农林科技大学, 2013.
Hu Qiuxia. Plant leaf disease recognition based on image analysis [D]. Yangling: Northwest A & F University, 2013.
[9] 秦丰, 刘东霞, 孙炳达, 等. 基于图像处理技术的四种苜蓿叶部病害的识别[J]. 中国农业大学学报, 2016, 21(10): 65-75.
Qin Feng, Liu Dongxia, Sun Bingda, et al. Recognition of four different alfalfa leaf diseases based on image processing technology [J]. Journal of China Agricultural University, 2016, 21(10): 65-75.
[10] Kamilaris A, PrenafetaBoldu F X. Deep learning in agriculture: A survey [J]. Computers and Electronics in Agriculture, 2018, 147: 70-90.
[11] Li Z, Yang Y, Li Y, et al. A solanaceae disease recognition model based on SEInception [J]. Computers and Electronics in Agriculture, 2020, 178:105792.
[12] 郭小清, 范涛杰, 舒欣. 基于改进MultiScale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169.
Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved MultiScale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169.
[13] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176.
Huang Shuangping, Sun Chao, Qi Long, et al. Rice panicle blast identification method based on deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 169-176.
[14] Xing S, Lee M, Lee K K. Citrus pests and diseases recognition model using weakly dense Connected Convolution Network [J]. Sensors (Basel, Switzerland), 2019, 19(14): 3195.
[15] 何欣, 李书琴, 刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程, 2021, 47(5): 285-291, 300.
He Xin, Li Shuqin, Liu Bin. Identification of grape leaf diseases based on multiscale residual neural network [J]. Computer Engineering, 2021, 47(5): 285-291, 300.
[16] 张友洪, 沈以红, 肖文福, 等. 家蚕杂交组合芳·绣×白·春的选配[J]. 蚕业科学, 2014, 40(6): 1017-1023.
Zhang Youhong, Shen Yihong, Xiao Wenfu, et al. Selective breeding of Bombyx mori cross combination Fang·Xiu × Bai·Chun [J]. Science of Sericulture, 2014, 40(6): 1017-1023.
[17] Ferentinos K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture, 2018, 145: 311-318.
[18] 冈萨雷斯. 数字图像处理(第三版)[M]. 北京: 电子工业出版社, 2017.
|