[1]
张放. 2019年我国主要水果生产变化简析[J]. 中国果业信息, 2021, 38(3): 23-33.
[2]
Kurtulmus F, Lee W S, Vardar A. Green citrus detection using ‘eigenfruit’, color and circular Gabor texture features under natural outdoor conditions [J]. Computers and Electronics in Agriculture, 2011, 78(2): 140-149.
[3]
Zhang J, He L, Karkee M, et al. Branch detection with apple trees trained in fruiting wall architecture using stereo vision and regionsconvolutional neural network (R-CNN) [C]. American Society of Agricultural and Biological Engineers, 2017(1).
[4]
岳有军, 田博凯, 王红君, 等. 基于改进Mask RCNN的复杂环境下苹果检测研究[J]. 中国农机化学报, 2019, 40(10): 128-134.
Yue Youjun, Tian Bokai, Wang Hongijun, et al. Research on apple detection in complex environment based on improved Mask RCNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 128-134.
[5]
武星, 齐泽宇, 王龙军, 等. 基于轻量化YOLOv3卷积神经网络的苹果检测方法[J]. 农业机械学报, 2020, 51(8): 17-25.
Wu Xing, Qi Zeyu, Wang Longjun, et al. Apple detection method based on lightYOLOv3 convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 17-25.
[6]
赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164 -173.
[7]
彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162.
Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
[8]
毕松, 高峰, 陈俊文, 等. 基于深度卷积神经网络的柑橘目标识别方法[J]. 农业机械学报, 2019, 50(5): 181-186.
Bi Song, Gao Feng, Chen Junwen, et al. Detection method of citrus based on deep convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 181-186.
[9]
牛犇, 滕运江. 基于树莓派的实时人脸表情识别[J]. 电子信息与软件工程, 2020(1): 135-136.
[10]
江美玲, 章杰. 基于树莓派的服装识别系统设计[J]. 传感器与微系统, 2020, 40(1): 98-100, 103.
Jiang Meiling, Zhang Jie. Design of clothing identification system based on Raspberry Pi [J]. Transducer and Microsystem Technologies, 2020, 40(1): 98-100, 103.
[11]
郭泽方. 基于改进SSD深度学习模型的柑橘实时识别研究[D]. 衡阳: 南华大学, 2020.
Guo Zefang. Realtime citrus detection based on improved SSD deep learning model [D]. Hengyang: University of South China, 2020.
[12]
马传金. 基于深度学习的无人机遥感柑橘果实识别[D]. 武汉: 华中师范大学, 2020.
Ma Chuanjin. UAVs remote sensing citrus recognition based on deep learning [D]. Wuhan: Central China Normal University, 2020.
|