[1]
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
Zhao Chunjiang. Stateoftheart and recommended developmental strategic objectives of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7.
[2]
赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-18.
Zhao Chunjiang. Big data of plant phenomics and its research progress [J]. Journal of Agricultural Big Data, 2019, 1(2): 5-18.
[3]
王璟璐, 张颖, 潘晓迪, 等. 作物表型组数据库研究进展及展望[J]. 中国农业信息, 2018, 30(5): 13-23.
[4]
张澎, 崔梦天, 谢琪, 等. 基于深度卷积生成对抗网络的植物图像识别方法的研究[J]. 西南民族大学学报(自然科学版), 2019, 45(2): 185-191.
[5]
樊帅, 王鑫, 阎镇. 基于全卷积神经网络的空间植物图像快速识别[J]. 计算机系统应用, 2018, 27(11): 136-141.
[6]
曹靖康, 段江永, 孟娟. 基于深度特征融合的空间植物图像分割算法[J]. 计算机与现代化, 2018(10): 58-62.
[7]
刘国奇, 邓铭, 李晨静. 融合RGB颜色空间的植物图像分割模型[J]. 郑州大学学报(理学版), 2019, 51(1): 18-23.
[8]
睢丹, 牛红惠. 基于图像优化分割技术的植物病虫害区域智能检测[J]. 福建农业, 2015(4): 133-134.
[9]
吴焕丽, 崔可旺, 张馨, 等. 基于改进Kmeans图像分割算法的细叶作物覆盖度提取[J]. 农业机械学报, 2019, 50(1): 42-50.
Wu Huanli, Cui Kewang, Zhang Xin, et al. Improving accuracy of fine leaf crop coverage by improved Kmeans algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 42-50.
[10]
Kumar J P, Domnic S. Image based leaf segmentation and counting in rosette plants [J]. Information Processing in Agriculture, 2018.
[11]
Qian W, Hong S, Li M Z, et al. Research on maize multispectral image accurate segmentation and chlorophyll index estimation [J]. Spectroscopy & Spectral Analysis, 2015, 35(1): 178.
[12]
Chen G, Jing H, Li D, et al. Image recognition of maize diseases based on fuzzy clustering and support vector machine algorithm [J]. Sensor Letters, 2012, 10(1-2): 433-438.
[13]
Goclawski J, SekulskaNalewajko J, Kuzniak E. Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses [J]. International Journal of Applied Mathematics & Computer Science, 2012, 22(3): 669-684.
[14]
Ma X, Deng X, Qi L, et al. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields [J]. PLoS ONE, 2019, 14(4).
[15]
吕植成. 基于MRF融合的银桂花朵图像阈值分割方法研究[J]. 中国农机化学报, 2019, 40(12): 149-153.
Lü Zhicheng. Research on O. fragrans Albus image thresholding segmentation method based on MRF fusion [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 149-153.
[16]
程玉柱, 段一凡, 李赵春. 基于PSO与水平集的桂花图像分割方法[J]. 中国农机化学报, 2018, 39(8): 81-84, 91.
Cheng Yuzhu, Duan Yifan, Li Zhaochun. Osmanthus fragrans image segmentation method based on PSO and level set [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(8): 81-84, 91.
[17]
Ronneberger O, Fischer P, Brox T. UNet: Convolutional Networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention. Springer International Publishing, 2015.
[18]
GarciaGarcia A, OrtsEscolano S, Oprea S, et al. A survey on deep learning techniques for image and video semantic segmentation [J]. Applied Soft Computing, 2018: S1568494618302813.
[19]
王建仑, 韩彧, 赵霜霜, 等. 自然光温室草莓叶片图像边缘提取的新多尺度分析算法[J]. 中国农业文摘农业工程, 2018, 30(1): 8-16.
[20]
牛亚晓, 张立元, 韩文霆. 基于Lab颜色空间的棉花覆盖度提取方法研究[J]. 农业机械学报, 2018, 49(10): 240-249.
Niu Yaxiao, Zhang Liyuan, Han Wenting. Extraction methods of cotton coverage based on Lab color space [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 240-249.
[21]
张加楠, 张雪芬, 简萌, 等. 先验阈值优化卷积神经网络的作物覆盖度提取算法[J]. 信号处理, 2017, 33(9): 1230-1238.
|