[1] 石学超, 周亚同, 韩卫雪. 自然场景下基于四级级联全卷积神经网络的人脸检测算法[J].铁道学报, 2019, 41(1): 80-86.
[2] Viola P A, Jones M J. Rapid object detection using a boosted cascade of simple features [C]. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001.
[3] Verri A, Uras S, De Micheli E. Motion Segmentation from Optical Flow [C].Alvey Vision Conference. 1989: 1-6.
[4] Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from realtime video [C]. Applications of Computer Vision, 1998. WACV98. Proceedings. Fourth IEEE Workshop on. IEEE, 1998.
[5] 李亚可, 玉振明. 级联的卷积神经网络人脸检测方法[J]. 计算机工程与应用, 2019, 55(24): 184-189.
[6] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [J]. IEEE Computer Society, 2013.
[7] Girshick R. Fast RCNN [J]. Computer Science, 2015.
[8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [J]. European Conference on Computer Vision, 2016.
[9] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection [J]. Computer Vision & Pattern Recognition, 2016.
[10] 蒋纪威, 何明祥, 孙凯. 基于改进YOLOv3的人脸实时检测方法[J]. 计算机应用与软件, 2020, 37(5): 200-204.
[11] 方阳, 刘英杰, 孙立博, 等. 基于SSD模型的人脸检测与头部姿态估计融合算法[J]. 江苏大学学报(自然科学版), 2019, 40(4): 451-457.
Fang Yang, Liu Yingjie, Sun Libo, et al. Fusion algorithm of face detection and headpose estimation based on SSD model [J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(4): 451-457.
[12] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNetlevel accuracy with 50x fewer parameters and < 0.5 MB model size [J]. arXiv preprint arXiv:1602.07360, 2016.
[13] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv:2004.10934, 2020.
[14] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN. 2020 IEEE [C]. CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2020: 1571-1580.
[15] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9): 1904-16.
[16] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [J]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[17] 付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J/OL]. 计算机工程与应用: 1-8 [2021-05-22].
[18] Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3 [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1314-1324.
[19] Heisele B, Serre T, Prentice S, et al. Hierarchical classification and feature reduction for fast face detection with support vector machines [J]. Pattern recognition, 2003, 36(9): 2007-2017.
[20] Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
[21] Yang S, Luo P, Loy C C, et al. WIDER FACE: A face detection benchmark [J]. IEEE Conference on Computer Vision & Pattern Recognition, 2016: 5525-5533.
[22] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
Xu Degang, Wang Lu, Li Fan. Review of typical object detection algorithms for deep learning [J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
|