[1]
李源, 马文强, 朱占江, 等. 新疆核桃产业发展现状及对策建议[J]. 农学学报, 2019, 9(7): 80-86.
Li Yuan, Ma Wenqiang, Zhu Zhanjiang, et al. Xinjiang walnut industry: The development status and countermeasures [J]. Journal of Agriculture, 2019, 9(7): 80-86.
[2]
Ji W, Zhao D, Cheng F, et al. Automatic recognition vision system guided for apple harvesting robot[J]. Computers & Electrical Engineering, 2012, 38(5): 1186-1195.
[3]
Hussin R, Juhari M R, Kang N W, et al. Digital Image processing techniques for object detection from complex background image [J]. Procedia Engineering, 2012, 41: 340-344.
[4]
马翠花, 张学平, 李育涛, 等. 基于显著性检测与改进Hough变换方法识别未成熟番茄[J]. 农业工程学报, 2016, 32(14): 219-226.
Ma Cuihua, Zhang Xueping, Li Yutao, et al. Identification of immature tomatoes base on salient region detection and improved Hough transform method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 219-226.
[5]
Sa I, Ge Z, Dayoub F, et al. DeepFruits: A fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): 1222.
[6]
薛月菊, 黄宁, 涂淑琴, 等. 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34(7): 173-179.
Xue Yueju, Huang Ning, Tu Shuqin, et al. Immature mango detection based on improved YOLOv2[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 173-179.
[7]
赵德安, 吴任迪, 刘晓洋, 等. 基于 YOLO 深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[8]
李善军, 胡定一, 高淑敏, 等. 基于改进SSD的柑橘实时分类检测[J]. 农业工程学报, 2019, 35(24): 307-313.
Li Shanjun, Hu Dingyi, Gao Shumin, et al. Realtime classification and detection of citrus based on improved single short multibox detecter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 307-313.
[9]
成伟, 张文爱, 冯青春, 等. 基于改进YOLOv3的温室番茄果实识别估产方法[J]. 中国农机化学报, 2021, 42(04): 176-182.
Cheng Wei, Zhang Wenai, Feng Qingchun, et al. Methods of greenhouse tomato fruit identification and yield estimation based om improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 176-182.
[10]
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection [J]. IEEE, 2016.
[11]
Wang C Y, Liao H, Wu Y H, et al. CSPNet: A New Backbone that can Enhance Learning Capability of CNN [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020.
[12]
Liu S, Qi L, Qin H, et al. Path Aggregation Network for Instance Segmentation [J]. IEEE, 2018.
[13]
H Rezatofighi, Tsoi N, JY Gwak, et al. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.
[14]
Redmon J, Farhadi A. YOLOv3: An incremental improvement [R]. arXiv: 1804. 02767, 2018.
[15]
Bochkovskiy A, Wang C Y, Liao H. YOLOv4: Optimal Speed and Accuracy of Object Detection [J]. 2020.
[16]
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards RealTime Object Detection with Region Proposal Networks[J]. 2017.
|