[1]
刘林, 朱泽, 王致远, 等. 水稻白穗突变体wp8的表型鉴定及候选基因定位和功能分析[J]. 南京农业大学学报, 2021, 44(6): 1035-1045.
Liu Lin, Zhu Ze, Wang Zhiyuan, et al. Phenotypic identification, candidate gene mapping and functional analysis of white panicle 8 (wp8) mutant in rice [J]. Journal of Nanjing Agricultural University, 2021, 44(6): 1035-1045.
[2]
李世娟, 诸叶平, 张红英, 等. 整株干物质量分配指数模型模拟冬小麦各器官形态参数[J]. 农业工程学报, 2019, 35(9): 155-162.
Li Shijuan, Zhu Yeping, Zhang Hongying, et al. Simulating winter wheat geometrical parameters of each organ using whole plant dry matter weight distribution index model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 155-162.
[3]
王鹤树, 曹丽英. 基于全卷积神经网络的植物叶片自动分割及表型解析[J]. 中国农机化学报, 2021, 42(8): 161-168.
Wang Heshu, Cao Liying. Automatic segmentation and phenotypic analysis of plant leaves based on fully convolutional networks [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 161-168.
[4]
李杨先, 张慧春, 杨旸. 一种基于图像处理技术的植物形态表型参数获取方法[J]. 林业工程学报, 2020, 5(6): 128-136.
Li Yangxian, Zhang Huichun, Yang Yang. A method for obtaining plant morphological phenotypic parameters using image processing technology [J]. Journal of Forestry Engineering, 2020, 5(6): 128-136.
[5]
张卫正, 李旭光, 万瀚文, 等. 基于骨架提取和二叉树分析的玉米植株图像茎叶分割方法[J]. 河南农业科学, 2020, 49(9): 166-172.
Zhang Weizheng, Li Xuguang, Wan Hanwen, et al. Stem and leaf segmentation of maize plant image based on skeleton extraction and binary tree analysis [J]. Journal of Henan Agricultural Sciences, 2020, 49(9): 166-172.
[6]
严佳豪, 彭辰晨, 陈超凡, 等. 基于机器视觉的植物表型研究现状[J]. 南方农机, 2021, 52(8): 195-196.
Yan Jiahao, Peng Chenchen, Chen Chaofan, et al. Research status of plant phenotype based on machine vision [J]. Southern Agricultural Machinery, 2021, 52(8): 195-196.
[7]
孙娅彬. 基于支持向量机的纹理图像分类算法[J]. 计算机仿真, 2012, 29(5): 287-290.
Sun Yabin. Texture image classification algorithm based on support vector machine [J]. Computer Simulation, 2012, 29(5): 287-290.
[8]
马娜, 李艳文, 徐苗. 基于改进SVM算法的植物叶片分类研究[J]. 山西农业大学学报(自然科学版), 2018, 38(11): 33-38.
Ma Na, Li Yanwen, Xu Miao. Plant leaf classification using improved SVM algorithm [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(11): 33-38.
[9]
刘守阳, 金时超, 郭庆华, 等. 基于数字化植物表型平台(D3P)的田间小麦冠层光截获算法开发[J]. 智慧农业, 2020, 2(1): 87-98.
Liu Shouyang, Jin Shichao, Guo Qinghua, et al. An algorithm for estimating field wheat canopy light interception based on digital plant phenotyping platform [J]. Smart Agriculture, 2020, 2(1): 87-98.
[10]
党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200.
Dang Manyi, Meng Qingkui, Gu Fang, et al. Rapid recognition of potato late blight based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 193-200.
[11]
程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7): 1428-1438.
Cheng Xu, Song Chen, Shi Jingang, et al. Asurvey of generic object detection methods based on deep learning [J]. Acta Electronica Sinica, 2021, 49(7): 1428-1438.
[12]
Hariharan B, Arbeláez P, Girshick R, et al. Simultaneous detection and segmentation [C]. European Conference on Computer Vision. Springer, Cham, 2014: 297-312.
[13]
Ma X, Deng X, Qi L, et al. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields [J]. PloS One, 2019, 14(4): e0215676.
[14]
张伟荣, 温浩军, 谯超凡, 等. 基于Mask R-CNN的玉米苗与株芯检测方法[J]. 新疆农业科学, 2021, 58(10): 1918-1928.
Zhang Weirong, Wen Haojun, Qiao Chaofan, et al. Maize seedling and core detection method based on Mask R-CNN [J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1918-1928.
[15]
范宏, 刘素红, 陈吉军, 等. 基于深度学习的白喉乌头与牧草高精度分类研究[J]. 江苏农业科学, 2021, 49(12): 173-180.
Fan Hong, Liu Suhong, Chen Jijun, et al. Study on highprecision classification of Aconitum leucostomum Worosch and pasture based on deep learning [J]. Jiangsu Agricultural Sciences, 2021, 49(12): 173-180.
[16]
邓寒冰, 许童羽, 周云成, 等. 基于深度掩码的玉米植株图像分割模型[J]. 农业工程学报, 2021, 37(18): 109-120.
Deng Hanbing, Xu Tongyu, Zhou Yuncheng, et al. Segmentation model for maize plant images based on depth mask [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 109-120.
[17]
吴海滨, 魏喜盈, 刘美红, 等. 结合空洞卷积和迁移学习改进YOLOv4的X光安检危险品检测[J]. 中国光学, 2021, 14(6): 1417-1425.
Wu Haibin, Wei Xiying, Liu Meihong, et al. Improved YOLOv4 for dangerous goods detection in Xray inspection combined with atrous convolution and transfer learning [J]. Chinese Optics, 2021, 14(6): 1417-1425.
[18]
陈进, 顾琰, 练毅, 等. 基于机器视觉的水稻杂质及破碎籽粒在线识别方法[J]. 农业工程学报, 2018, 34(13): 187-194.
Chen Jin, Gu Yan, Lian Yi, et al. Online recognition method of impurities and broken paddy grains based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 187-194.
[19]
陈进, 韩梦娜, 练毅, 等. 基于U-Net模型的含杂水稻籽粒图像分割[J]. 农业工程学报, 2020, 36(10): 174-180.
Chen Jin, Han Mengna, Lian Yi, et al. Segmentation of impurity rice grain images based on U-Net model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 174-180.
|