[1] 侯俊铭, 姚恩超, 朱红杰. 基于卷积神经网络的蓖麻种子损伤分类研究[J]. 农业机械学报, 2020, 51(S1): 440-449.
Hou Junming, Yao Enchao, Zhu Hongjie. Classification of castor seed damage based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 440-449.
[2] 丁永军, 张晶晶, 李民赞. 基于卷积胶囊网络的百合病害识别研究[J]. 农业机械学报, 2020, 51(12): 246-251-331.
Ding Yongjun, Zhang Jingjing, Li Minzan. Disease detection of lily based on convolutional capsule network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 246-251, 331.
[3] 汪传建, 赵庆展, 马永建, 等. 基于卷积神经网络的无人机遥感农作物分类[J]. 农业机械学报, 2019, 50(11): 161-168.
Wang Chuanjian, Zhao Qingzhan, Ma Yongjian, et al. Crop identification of drone remote sensing based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 161-168.
[4] 王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究[J]. 中国农机化学报, 2021, 42(2): 139-145.
Wang Guowei, Liu Jiaxin. Research on corn disease recondition method based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 139-145.
[5] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191.
Zhao Lixin, Hou Fadong, Lu Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191.
[6] 余小东, 杨孟辑, 张海清, 等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报, 2020, 51(10): 252-258.
Yu Xiaodong, Yang Mengji, Zhang Haiqing, et al. Research and application of crop diseases detection method based on transfer learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 252-258.
[7] Gu R, Niu C, Wu F, et al. From serverbased to clientbased machine learning: A comprehensive survey [J]. ACM Computing Surveys (CSUR), 2021, 54(1): 1-36.
[8] 马富齐, 王波, 董旭柱, 等. 电力视觉边缘智能: 边缘计算驱动下的电力深度视觉加速技术[J]. 电网技术, 2020, 44(6): 2020-2029.
Ma Fuqi, Wang Bo, Dong Xuzhu, et al. Power vision edge intelligence: Power depth vision acceleration technology driven by edge computing [J]. Power System Technology, 2020, 44(6): 2020-2029.
[9] GonzalezHuitron V, LeónBorges José A, RodriguezMata A E, et al. Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4 [J]. Computers and Electronics in Agriculture, 2021, 181: 105951.
[10] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 4510-4520.
[11] Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8697-8710.
[12] Franois Chollet. Xception: Deep learning with depthwise separable convolutions [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.
[13] Andrew Howard, Mark Sandler, Grace Chu, et al. Searching for mobilenetv3[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1314-1324.
[14] Durmus H, Günes E O, Kirci M. Disease detection on the leaves of the tomato plants by using deep learning [C]. 2017 6th International Conference on AgroGeoinformatics. IEEE, 2017: 1-5.
[15] 王健, 刘雪花. 基于深度可分离卷积的苹果叶病理识别[J]. 计算机系统应用, 2020, 29(11): 190-195.
Wang Jian, Liu Xuehua. Pathological recognition of apple leaves based on deeply separable convolution [J]. Computer Systems & Applications, 2020, 29(11): 190-195.
[16] 王冠, 王建新, 孙钰. 面向边缘计算的轻量级植物病害识别模型[J]. 浙江农林大学学报, 2020, 37(5): 978-985.
Wang Guan, Wang Jianxin, Sun Yu. Lightweight plant disease recognition model for edge computing [J]. Journal of Zhejiang A & F University, 2020, 37(5): 978-985.
[17] 刘阳, 高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报, 2021, 37(2): 187-195.
Liu Yang, Gao Guoqin. Identification of multiple leaf diseases using improved SqueezeNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 187-195.
[18] 刘连忠, 李孟杰, 宁井铭. 基于时序巡航图像的茶树生长监测研究[J]. 浙江农业学报, 2020, 32(05): 886-896.
Liu Lianzhong, Li Mengjie, Ning Jingming. Tea plant growth monitoring based on time series cruise images [J]. Acta Agriculturae Zhejiangensis, 2020, 32(5): 886-896.
[19] Molchanov P, Mallya A, Tyree S, et al. Importance estimation for neural network pruning [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11264-11272.
[20] Liu Z, Sun M, Zhou T, et al. Rethinking the value of network pruning [C]. International conference on learning representations. 2018.
[21] He Y, Lin J, Liu Z, et al. AMC: AutoML for model compression and acceleration on mobile devices [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 784-800.
[22] 谢军, 江朝晖, 李博, 等. 基于二次迁移模型的小样本茶树病害识别[J]. 江苏农业科学, 2021, 49(6): 176-182.
[23] 杨观赐, 杨静, 李少波, 等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报: 自然科学版, 2018, 46(7): 122-127.
Yang Guanci, Yang Jing, Li Shaobo, et al. Modified CNN algorithm based on Dropout and ADAM optimizer [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(7): 122-127.
[24] 蒋文斌, 彭晶, 叶阁焰. 深度学习自适应学习率算法研究[J]. 华中科技大学学报(自然科学版), 2019, 47(5): 79-83.
Jiang Wenbin, Peng Jing, Ye Geyan. Research on adaptive learning rate algorithm in deep learning [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(5): 79-83.
[25] Mittal S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform [J]. Journal of systems architecture, 2019, 97: 428-442.
|