[1] 刘璐, 王景红, 屈振江, 等. 陕西省苹果单产非线性预测模型研究[J]. 中国农学通讯学报, 2012, 28(25): 248-251. Liu Lu, Wang Jinghong, Qu Zhenjiang, et al. Research on non-linear regression model of meteorological factors for apple yield in Shaanxi Province [J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 248-251. [2] 甘家铭. 黄土高原苹果园三种主要病虫管理模式研究[D]. 杨凌: 西北农林科技大学, 2017. Lu Jiaming. Study on management mode of three main diseases and insect pests in apple orchard on Loess Plateau [D]. Yangling: Northwest A & F University, 2017. [3] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17. Lu Hongtao, Zhang Qinchuan. Applications of deep convolutional neural network in computer vision [J]. Journal of Data Acquisition and Processing, 2016, 31(1): 1-17. [4] 黎亚雄, 张坚强, 潘登, 等. 基于RNN-RBM语言模型的语音识别研究[J]. 计算机研究与发展, 2014, 51(9): 1936-1944. Li Yaxiong, Zhang Jianqiang, Pan Deng, et al. A study of speech recognition based on RNN-RBM language model [J]. Journal of Computer Research and Development, 2014, 51(9): 1936-1944. [5] 王科俊, 赵彦东, 邢向磊. 深度学习在无人驾驶汽车领域应用的研究进展[J]. 智能系统学报, 2018, 13(1): 55-69. Wang Kejun, Zhao Yandong, Xing Xianglei, et al. Deep learning in driverless vehicles [J]. CAAI Transactions on Intelligent Systems, 2018, 13(1): 55-69. [6] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米大斑病与锈病的识别[J/OL]. 农业机械学报: 1-12[2020-11-04]. Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 1-12[2020-11-04]. [7] 史冰莹, 李佳琦, 张磊, 等. 基于CNN的农作物病虫害图像识别模型[J]. 计算机系统应用, 2020, 29(6): 89-96. Shi Bingying, Li Jiaqi, Zhang Lei, et al. Recognition model of crop pests and diseases images based on CNN [J]. Computer Systems & Applications, 2020, 29(6): 89-96. [8] 毕松, 高峰, 陈俊文, 等. 基于深度卷积神经网络的柑橘目标识别方法[J]. 农业机械学报, 2019, 50(5): 181-186. Bi Song, Gao Feng, Chen Junwen, et al. Detection method of citrus based on deep convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 181-186. [9] 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58. Gao Zhenyu, Wang An, Liu Yong, et al. Intelligent fresh-tea-leaves sorting system research based on convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. [10] 牛冲, 牛昱光, 李寒, 等. 基于图像灰度直方图特征的草莓病虫害识别[J]. 江苏农业科学, 2017, 45(4): 169-172. [11] 苏鸿, 温国泉, 谢玮, 等. 基于区域卷积神经网络模型的广西柑橘病虫害识别方法研究[J]. 西南农业学报, 2020, 33(4): 805-810. Su Hong, Wen Guoquan, Xie Wei, et al. Research on citrus pest and disease recognition method in Guangxi based on regional convolutional network [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 805-810. [12] 孙鹏, 陈桂芬, 曹丽英. 基于注意力卷积神经网络的大豆害虫图像识别[J]. 中国农机化学报, 2020, 41(2): 171-176. Sun Peng, Chen Guifen, Cao Liying. Image recognition of soybean pests based on attention convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 171-176. [13] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191. [14] 姬腾飞. 基于卷积神经网络的遥感图像场景分类研究[D]. 开封: 河南大学, 2019. Ji Tengfei. Remote sensing image scene classification based on convolution neural network [D]. Kaifeng: Henan University, 2019. [15] 石祥滨, 房雪键, 张德园, 等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报, 2016, 28(1): 167-173, 182. Shi Xiangbin, Fang Xuejian, Zhang Deyuan, et al. Image classification based on mixed deep learning model transfer learning [J]. Journal of System Simulation, 2016, 28(1): 167-173, 182. [16] 海潮. 基于深度学习的红枣缺陷识别技术研究[D]. 郑州: 郑州大学, 2019. Hai Chao. Research on jujube defect recognition technology based on deep learning [D]. Zhengzhou: Zhengzhou University, 2019. [17] 黄亦其, 刘琪, 赵建晔, 等. 基于深度卷积神经网络的红树林物种无人机监测研究[J]. 中国农机化学报, 2020, 41(2): 141-146, 189. Huang Yiqi, Liu Qi, Zhao Jianye, et al. Research on unmanned aerial surveillance of mangrove species based on deep convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 141-146, 189. [18] 谢万里, 李宏志, 周辉, 等. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究[J]. 中国农机化学报, 2019, 40(2): 186-192. Xie Wanli, Li Hongzhi, Zhou Hui, et al. Fish dying on the basis of convolution neural network and transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(2): 186-192. [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [J]. Computer Science, 2014. [20] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. Computer Science, 2016. [21] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [J]. IEEE Computer Society, 2014. [22] Szegedy C, Wei L, Jia Y, et al. Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. [23] 季刚, 姚艳, 江双五. 基于径向基神经网络的月降水量预测模型研究[J]. 计算机技术与发展, 2013, 23(12): 186-189. Ji Gang, Yao Yan, Jiang Shuangwu. Research on monthly rainfall forecast model based on RBF neural network [J]. Computer Technology and Development, 2013, 23(12): 186-189. [24] Kingma D, Ba J. Adam: A method for stochastic optimization [J]. Computer Science, 2014.
|