English

中国农机化学报

中国农机化学报 ›› 2022, Vol. 43 ›› Issue (3): 104-110.DOI: 10.13733/j.jcam.issn.2095⁃5553.2022.03.014

• • 上一篇    下一篇

基于高光谱的烤烟叶绿素含量估算模型研究

蒋柏春1,李德仑2,韦克苏2,张富贵1,王杰3,刘红芸1   

  1. 1.贵州大学机械工程学院,贵阳市,550025; 2.贵州省烟草科学研究院,贵阳市,550025;
    3.四川矿产机电技师学院,成都市,611230
  • 出版日期:2022-03-15 发布日期:2022-04-11

Estimation model of chlorophyll content of flue⁃cured tobacco based on hyperspectral

Jiang Baichun, Li Delun, Wei Kesu, Zhang Fugui, Wang Jie, Liu Hongyun.   

  • Online:2022-03-15 Published:2022-04-11

摘要: 研究烤烟叶片叶绿素含量与高光谱参数的相关性,建立叶绿素含量估算模型,为构建或筛选系统的烟叶烘烤特性评价指标奠定基础。以云烟87为研究对象,测定不同成熟度水平和不同烘烤温度下,叶片叶绿素含量及400~1 000 nm光谱反射率,以烤烟叶片高光谱反射率与烤烟叶片叶绿素含量为数据源,用SPA(连续投影算法)对高光谱数据进行特征波段筛选,筛选出10个与叶绿素含量相关的特征波长作为实验样本数据,采用基于SPA算法的SPA-BP,SPA-Ridge和SPA-LR3种预测模型预测不同烘烤温度点烟叶叶片叶绿素浓度,并比较各模型的决定系数(R²),均方根误差(RMSE)以及均方误差(MRE)。3种基于SPA连续投影算法的预测模型都能较好有效预测不同烘烤温度点烟叶叶片叶绿素含量,其中SPA-BP预测模型效果最好,R²达到了0.967,RMSE为0.101,SPA-LR预测模型次之,R²达到了0.956,SPA-Ridge预测模型最低,R²达到了0.916,经验证SPA-BP预测模型的准确率为83.33%,SPA-LR预测模型的准确率为75%,SPA-Ridge预测模型的准确率为70.83%,表明BP神经网络方法的预测效果要优于线性方法,具有更好的寻优能力和预测精度,预测模型可为烟叶烘烤过程中叶绿素含量的定性研究提供理论依据。

关键词: 叶绿素, 高光谱, SPA, 特征波段, BP神经网络, 预测模型

Abstract: This paper study the correlation between chlorophyll content and hyperspectral parameters of flue⁃cured tobacco leaves and establish an estimation model of chlorophyll contentto lay a foundation for establishing or screening evaluation indexes of flue⁃cured tobacco leaf curing characteristics.Tobacco type Yunyan 87 was selected as the research object. The chlorophyll content of flue⁃cured tobacco leaves and spectral reflectance of 400-1 000 nm were measured under different maturity levels and different curing temperatures,and the characteristic bands of hyperspectral data were screened by SPA (continuous projection algorithm). Ten characteristic wavelengths related to chlorophyll content were selected as experimental sample data. Three prediction models, SPA-BP, SPA-Ridge, and SPA-Ridge, based on the SPA algorithm, were used to predict the chlorophyll concentration of tobacco leaves at different curing temperatures and the coefficient of determination (R2) of each model was compared. Root mean square error (RMSE) and mean square error (MRE).The three prediction models based on the SPA continuous projection algorithm effectively predicted the chlorophyll content of tobacco leaves at different baking temperatures, and the SPA-BP prediction model was the best 0.967, RMSE is 0.101,SPA-Ridge is the second, R2=0.956,SPA⁃Ridge model was the lowest, R2=0.916. The prediction effect of the BP neural network method was better than that of the linear method, and it had better optimization ability and prediction accuracy. The prediction model can provide a theoretical basis for qualitative research of chlorophyll content in the tobacco curing process.

Key words: chlorophyll, hyperspectral, SPA, characteristic band, BP neural network, prediction model

中图分类号: