[1]
陈圣波, 陈彦冰, 任枫荻, 等. 基于光谱指数的玉米叶绿素含量估算[J]. 信阳师范学院学报(自然科学版), 2021, 34(2): 225-229.
Chen Shengbo, Chen Yanbing, Ren Fengdi, et al. Estimation of maize chlorophyll content based on spectral index [J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(2): 225-229.
[2]
尼格拉·吐尔逊, 苏磊·乃比, 高健, 等. GWLSSVR模型的红枣树叶片叶绿素含量估算[J]. 光谱学与光谱分析, 2021, 41(6): 1730-1736.
Nigela Tuerxun, Sulei Naibi, Gao Jian, et al. Chlorophyll content estimation of jujube leaves based on GWLSSVR model [J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1730-1736.
[3]
李金敏, 陈秀青, 杨琦, 等. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
Li Jinmin, Chen Xiuqing, Yang Qi, et al. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data [J]. Acta Agronomica Sinica, 2021, 47(7): 1342-1350.
[4]
纪景纯, 刘建立, 牛玉洁, 等. 基于全波段高光谱的冬小麦生长参数估算方法比较[J]. 作物杂志, 2020(6): 180-188.
Ji Jingchun, Liu Jianli, Niu Yujie, et al. Comparison of estimation methods for growth parameters of winter wheat based on fullband hyperspectral data [J]. Crops, 2020(6): 180-188.
[5]
张泽, 马露露, 洪帅, 等. 滴灌棉田植株氮营养指数的高光谱诊断研究[J]. 棉花学报, 2020, 32(5): 392-403.
Zhang Ze, Ma Lulu, Hong Shuai, et al. Study on hyperspectral diagnosis of nitrogen nutrition index among different cotton varieties under drip irrigation [J]. Cotton Science, 2020, 32(5): 392-403.
[6]
王玉娜, 李粉玲, 王伟东, 等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报, 2020, 40(11): 1389-1398.
Wang Yuna, Li Fenling, Wang Weidong, et al. HyperSpectral remote sensing stimation of shoot biomass of winter wheat based on SPA and transformation spectra [J]. Journal of Triticeae Crops, 2020, 40(11): 1389-1398.
[7]
童倩倩, 李莉婕, 赵泽英, 等. 基于离散小波算法定量反演贵州百香果叶片叶绿素含量的研究[J]. 西南农业学报, 2020, 33(12): 2927-2932.
Tong Qianqian, Li Lijie, Zhao Zeying, et al. Quantitative inversion of chlorophyll content in Passiflora edulis leaves based on discrete wavelet algorithm in Guizhou Province [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(12): 2927-2932.
[8]
孙俊, 靳海涛, 芦兵, 等. 基于高光谱图像及深度特征的大米蛋白质含量预测模型[J]. 农业工程学报, 2019, 35(15): 295-303.
Sun Jun, Jin Haitao, Lu Bing, et al. Prediction model of rice protein content based on hyperspectral image and deep feature [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15): 295-303.
[9]
孙俊, 靳海涛, 武小红, 等. 基于低秩自动编码器及高光谱图像的茶叶品种鉴别[J]. 农业机械学报, 2018, 49(8): 316-323.
Sun Jun, Jin Haitao, Wu Xiaohong, et al. Tea variety identification based on lowrank stacked autoencoder and hyperspectral image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 316-323.
[10]
Zhang Z, Meng Q. Intelligent medical image feature extraction method based on improved deep learning [J]. Technology and health care: official journal of the European Society for Engineering and Medicine, 2020, 29(6): 1-17.
[11]
Liang M, Liu R W, Li S, et al. An unsupervised learning method with convolutional autoencoder for vessel trajectory similarity computation [J]. Ocean Engineering, 2021, 225.
[12]
胡捷, 李俊峰. 基于残差卷积自动编码器的导光板线划伤检测方法研究[J]. 光电子·激光, 2020, 31(8): 825-833.
Hu Jie, Li Junfeng. Research on line scratch detection method of light guide plate based on residual convolutional autoencoder [J]. Journal of Optoelectronics·Laser, 2020, 31(8): 825-833.
[13]
Singh J, Paliwal K, Singh J, et al. RNA backbone torsion and pseudotorsion angle prediction using dilated convolutional neural networks [J]. Journal of Chemical Information and Modeling, 2021, 61(6): 2610-2622.
[14]
Wang Z, Ji S. Smoothed dilated convolutions for improved dense prediction [J]. Data Mining and Knowledge Discovery, 2021, 35(2): 1470-1496.
[15]
王爱丽, 张宇枭, 吴海滨, 等. 基于空洞卷积胶囊网络的激光雷达数据分类[J]. 中国激光, 2021, 48(11): 180-192.
Wang Aili, Zhang Yuxiao, Wu Haibin, et al. LiDAR data classification based on dilated convolution capsule network [J]. Chinese Journal of Lasers, 2021, 48(11): 180-192.
[16]
Zhang C, Zhou L, Zhao Y, et al. Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods [J]. Chemometrics and Intelligent Laboratory Systems, 2020, 203: 104063.
[17]
罗月童, 卞景帅, 张蒙, 等. 基于卷积去噪自编码器的芯片表面弱缺陷检测方法[J]. 计算机科学, 2020, 47(2): 118-125.
Luo Yuetong, Bian Jingshuai, Zhang Meng, et al. Detection method of chip surface weak defect based on convlution denoising autoencoders [J]. Computer Science, 2020, 47(2): 118-125.
[18]
谢冰, 段哲民, 郑宾, 等. 基于迁移学习SAE的无人机目标识别算法研究[J]. 红外与激光工程, 2018, 47(6): 214-220.
Xie Bing, Duan Zhemin, Zheng Bin, et al. Research on UAV target recognition algorithm based on transfer learning SAE [J]. Infrared and Laser Engineering, 2018, 47(6): 214-220.
[19]
董朋欣, 董安国, 李楚婷, 等. 基于全卷积网络和自编码的高光谱图像分类[J]. 计算机工程与应用, 2022, 58(5): 256-263.
Dong Pengxin, Dong Anguo, Li Chuting, et al. Hyperspectral image classification based on fully convolutional network and autoencoder [J]. Computer Engineering and Applications, 2022, 58(5): 256-263.
|