[1] Arun K B, Chandran J, Dhanya R , et al. A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato [J]. Food Bioscience, 2015, 9(4): 36-46.
[2] 杨红云, 罗建军, 孙爱珍, 等. 基于图像特征的水稻叶片全氮含量估测模型研究[J]. 浙江农业学报, 2020, 32(12): 2232-2243.
Yang Hongyun, Luo Jianjun, Sun Aizhen, et al. Study on estimation model of total nitrogen content in rice leaves based on image characteristics [J]. Acta Agriculturae Zhejiangensis,2020, 32(12): 2232-2243.
[3] 卓伟, 于旭峰, 李欣庭, 等. 高光谱成像技术实现马铃薯叶片叶绿素无损检测[J]. 光学仪器, 2020, 42(6): 1-8.
Zhuo Wei, Yu Xufeng, Li Xinting, et al. Non⁃destructive detection of potato leaf chlorophyll with hyperspectral imaging technology [J]. Optical Instruments,2020, 42(6): 1-8.
[4] 罗建军, 杨红云, 路艳, 等. 基于高光谱和参数优化支持向量机的水稻施氮水平分类研究[J]. 中国土壤与肥料, 2020(5): 250-257.
Luo Jianjun, Yang Hongyun, Lu Yan, et al. Classification of nitrogen application levels in rice based on hyperspectral and parameter optimized support vector machine [J]. Soil and Fertilizer Sciences in China, 2020(5): 250-257.
[5] 孙红, 刘宁, 吴莉, 等. 高光谱成像的马铃薯叶片含水率分布可视化[J]. 光谱学与光谱分析, 2019, 39(3): 910-916.
Sun Hong, Liu Ning, Wu Li, et al.Visualization of water content distribution in potato leaves based on hyperspectral image [J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 910-916.
[6] 刘燕德, 姜小刚, 周衍华, 等. 基于高光谱成像技术对脐橙叶片的叶绿素、水分和氮素定量分析[J]. 中国农机化学报, 2016, 37(3): 218-224.
Liu Yande, Jiang Xiaogang, Zhou Yanhua, et al. Quantitative analysis of chlorophyll, water and nitrogen for navel orange leaf based on hyper-spectral imaging technology [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 218-224.
[7] 霍迎秋, 张晨, 李宇豪, 等. 高光谱图像结合机器学习方法无损检测猕猴桃[J]. 中国农机化学报, 2019, 40(4): 71-77.
Huo Yingqiu, Zhang Chen, Li Yuhao, et al. Nondestructive detection for kiwifruit based on the hyperspectral technology and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 71-77.
[8] 魏利峰, 纪建伟. 高光谱图像技术检测农作物含水量的研究进展[J]. 中国农机化学报, 2016, 37(7): 80-84.
Wei Lifeng, Ji Jianwei. Advancement of detection of crop moisture content based on hyperspectral imaging [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 80-84.
[9] 孙旭东, 郝勇, 张光伟. 近红外光谱结合最小二乘支持向量机的脐橙叶片含水率无损检测[J]. 中国农机化学报, 2015, 36(2): 150-153, 168.
Sun Xudong, Hao Yong, Zhang Guangwei. Nondestructive detection of water content for navel oranges' leaves using near-infrared spectroscopy combined with least squares support vector machine [J].Journal of Chinese Agricultural Mechanization, 2015, 36(2): 150-153, 168.
[10] 阳昌霞, 刘汉湖, 张春. 基于SVM与RF的无人机高光谱农作物精细分类[J]. 河南科学, 2020, 38(12): 1987-1995.
Yang Changxia, Liu Hanhu, Zhang Chun.UAV hyperspectral remote sensing image crop fine classification based on SVM and RF [J]. Henan Science,2020,38(12):1987-1995.
[11] 李广洋, 寇卫利, 陈帮乾, 等. 多核学习算法及其在高光谱图像分类中的应用研究进展[J]. 地球信息科学学报, 2021, 23(3): 492-504.
Li Guangyang, Kou Weili, Chen Bangqian, et al. Multiple kernel learning algorithm and its application research progress in hyperspectral image classification [J]. Journal of Geo⁃information Science, 2021, 23(3): 492-504.
[12] 赵凡, 闫昭如, 薛建新, 等. 高光谱无损识别野生和种植黑枸杞[J]. 光谱学与光谱分析, 2021, 41(1): 201-205.
Zhao Fan, Yan Zhaoru, Xue Jianxin. Identification of wild black and cultivated goji berries by hyperspectral image [J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 201-205.
[13] 李超, 柴玉梅, 南晓斐, 等. 基于深度学习的问题分类方法研究[J]. 计算机科学, 2016, 43(12): 115-119.
Li Chao, Chai Yumei, Nan Xiaofei, et al. Research on problem classification method based on deep⁃learning [J]. Computer Science, 2016, 43(12): 115-119.
[14] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
Zhou Feiyan, JinLinpeng, Dong Jun.Review of convolutional neural network [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[15] Huang K K, Ren C X, Liu H, et al. Hyperspectral image classification via discriminative convolutional neural network with an improved triplet loss [J]. Pattern Recognition, 2020, 112(2): 107744.
[16] 万亚玲, 钟锡武, 刘慧, 等. 卷积神经网络在高光谱图像分类中的应用综述[J]. 计算机工程与应用, 2021, 57(4): 1-10.
Wan Yaling, Zhong Xiwu, Liu Hui, et al. Survey of application of convolutional neural network in classification of hyperspectral images [J]. Computer Engineering and Applications, 2021, 57(4): 1-10.
[17] Polder G, Blok P M, Villiers H, et al. Potato virus y detection in seed potatoes using deep learning on hyperspectral images [J]. Other, 2019, 10.
[18] 高红民, 曹雪莹, 陈忠昊, 等. 基于多尺度近端特征拼接网络的高光谱图像分类方法[J]. 通信学报, 2021, 42(2): 92-102.
Gao Hongmin, Cao Xueying, Chen Zhonghao, et al.Hyperspectral image classification method based on multi⁃scale proximal feature concatenate network [J]. Journal on Communications, 2021, 42(2): 92-102.
[19] 潘绍明. 基于多融合多尺度特征的高光谱图像分类研究[J]. 激光杂志, 2021, 42(2): 110-114.
[20] 陈俊芬, 赵佳成, 韩洁, 等. 基于深度特征表示的Softmax聚类算法[J]. 南京大学学报(自然科学), 2020, 56(4): 533-540.
Chen Junfen, Zhao Jiacheng, Han Jie, et al. Softmax clustering algorithm based on deep features representation. Journal of Nanjing University(Natural Science), 2020, 56(4):533-540.
[21] 梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7): 523-529.
|