[1] 何勇, 聂鹏程, 刘飞. 农业物联网与传感仪器研究进展[J]. 农业机械学报, 2013, 44(10): 216-226.
He Yong, NiePengcheng, Liu Fei. Advancement and trend of Internet of Things inagriculture and sensing instrument [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 216-226.
[2] 李瑾, 郭美荣, 高亮亮. 农业物联网技术应用及创新发展策略[J]. 农业工程学报, 2015, 31(S2): 200-209.
Li Jin, GuoMeirong, GaoLiangliang. Application and innovation strategy of agricultural Internet of Things [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S2): 200-209.
[3] 刘阳春, 苑严伟, 张俊宁, 等. 深松作业远程管理系统设计与试验[J]. 农业机械学报, 2016, 47(S1): 43-48.
Liu Yangchun, Yuan Yanwei, Zhang Junning, et al. Design and experiment of remote management system for subsoiler [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 43-48.
[4] 张晓东. 基于Android的农机深松作业监控与服务系统设计与实现[D]. 泰安: 山东农业大学, 2016.
Zhang Xiaodong. Design and implementation of monitoring and service system for deep soiling operation of agricultural machinery based on Android [D]. Tai’an: Shandong Agricultural University, 2016.
[5] Yin Yanxin, Meng Zhijun, Mei Hebo, et al. Study on tilling depth detection method based on attitude measurement for subsoiler [C]. National Engineering Research Center for Information Technology in Agriculture, 2015.
[6] 邓继忠, 李敏, 袁之报, 等. 基于图像识别的小麦腥黑穗病害特征提取与分类[J]. 农业工程学报, 2012, 28(3): 172-176.
Deng Jizhong, Li Min, Yuan Zhibao, et al. Feature extraction and classification of Tilletia diseases based on image recognition [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(3): 172-176.
[7] 温芝元, 曹乐平. 基于补偿模糊神经网络的脐橙不同病虫害图像识别[J]. 农业工程学报, 2012, 28(11): 152-157.
Wen Zhiyuan, Cao Leping. Image recognition of navel orange diseases and insect pests based on compensatory fuzzy neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 152-157.
[8] Tan Kezhu, Chai Yuhua, Song Weixian, et al. Identification of soybean seed varieties based on hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 235-242.
[9] 陶华伟, 赵力, 奚吉, 等. 基于颜色及纹理特征的果蔬种类识别方法[J]. 农业工程学报, 2014, 30(16): 305-311.
Tao Huawei, Zhao Li, Xi Ji, et al. Fruits and vegetables recognition based on color and texture features[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(16): 305-311.
[10] 钱建平, 李明, 杨信廷, 等. 基于双侧图像识别的单株苹果树产量估测模型[J]. 农业工程学报, 2013, 29(11): 132-138.
Qian Jianping, Li Ming, Yang Xinting, et al. Yield estimation model of single tree of Fuji apples based on bilateral image identification [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 132-138.
[11] 贾洪雷, 王刚, 郭明卓, 等. 基于机器视觉的玉米植株数量获取方法与试验[J]. 农业工程学报, 2015, 31(3): 215-220.
JiaHonglei, Wang Gang, Guo Mingzhuo, et al. Methods and experiments of obtaining corn population based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 215-220.
[12] 张铁民, 庄晓霖. 基于DM642的高地隙小车的田间路径识别导航系统[J]. 农业工程学报, 2015, 31(4): 160-167.
Zhang Tiemin, Zhuang Xiaolin. Identification and navigation system of farmland path for highclearance vehicle based on DM642[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 160-167.
[13] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521: 436-444.
[14] Schmidhuber J. Deep learning in neural networks: An overview [J]. Neural Networks, 2014, 61: 85-117.
[15] Haykin S, Kosko B. Gradient based learning applied to document recognition [D]. WileyIEEE Press, 2009, 86(11): 306-351.
[16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [C]. International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012: 1097-1105.
[17] Dan C C, Meier U, Gambardella L M, et al. Convolutional neural network committees for handwritten character classification [C]. International Conference on Document Analysis and Recognition. IEEE, 2011: 1135-1139.
[18] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015: 1-9.
[19] BlucheT, Ney H, Kermorvant C. Feature extraction with convolutional neural networks for handwritten word recognition [C]. International Conference on Document Analysis and Recognition. IEEE, 2013: 285-289.
[20] He H, Shao Z, Tan J. Recognition of car makes and models from a single trafficcamera image [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3182-3192.
[21] Liu Z, Luo P, Qiu S, et al. DeepFashion: Powering robust clothes recognition and retrieval with rich annotations[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1096-1104.
[22] Noda K, Yamaguchi Y, Nakadai K, et al. Audiovisual speech recognition using deep learning [J]. Applied Intelligence, 2015, 42(4): 722-737.
[23] Bahdanau D, Chorowski J, Serdyuk D, et al. Endtoend attentionbased large vocabulary speech recognition [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2016: 4945-4949.
[24] Hu B, Lu Z, Li H, et al. Convolutional neural network architectures for matching natural language sentences [J]. Advances in Neural Information Processing Systems, 2015, 3: 2042-2050.
[25] Bojar O, Chatterjee R, Federmann C, et al. Findings of the 2016 conference on machine translation[C]. Conference on Machine Translation, 2016: 131-198.
[26] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209.
Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209.
[27] 卢伟, 胡海阳, 王家鹏, 等. 基于卷积神经网络面部图像识别的拖拉机驾驶员疲劳检测[J]. 农业工程学报, 2018, 34(7): 192-199.
Lu Wei, Hu Haiyang, Wang Jiapeng, et al. Tractor driver fatigue detection based on convolution neural network and facial image recognition [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 192-199.
[28] 孔庆好, 吐尔逊·买买提, 赵梦佳. 基于卷积神经网络的拖拉机工况识别[J]. 中国农机化学报, 2021, 42(11): 144-150.
Kong Qinghao, Turxun Maimaiti, Zhao Mengjia. Recognition of tractor working condition based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 144-150.
|