[1] 李光涛. 浅议苹果种植与病虫害防治技术[J]. 山西农经, 2020(23): 87-88.
[2] 王东方, 汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报, 2021, 37(4): 199-207.
Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residual networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 199-207.
[3] 张善文, 张晴晴, 李萍. 基于改进深度卷积神经网络的苹果病害识别[J]. 林业工程学报, 2019, 4(4): 107-112.
Zhang Shanwen, Zhang Qingqing, Li Ping. Apple disease identification based on improved deep convolutional neural network [J]. Journal of Forestry Engineering, 2019, 4(4): 107-112.
[4] Kaur R, Kang S S. An enhancement in classifier support vector machine to improve plant disease detection [C]. IEEE International Conference on Moocs. IEEE, 2016.
[5] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Commun. ACM, 2017, 60(6): 84-90.
[6] 郭小清, 范涛杰, 舒欣. 基于改进MultiScale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169.
Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved MultiScale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169.
[7] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236, 253.
Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236, 253.
[8] 杨明欣, 张耀光, 刘涛. 基于卷积神经网络的玉米病害小样本识别研究[J]. 中国生态农业学报(中英文), 2020, 28(12): 1924-1931.
Yang Mingxin, Zhang Yaoguang, Liu Tao. Corn disease recognition based on the convolutional neural network with a small sampling size [J]. Chinese Journal of EcoAgriculture, 2020, 28(12): 1924-1931.
[9] 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44.
Chen Guifen, Zhao Shan, Cao Liying, et al. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44.
[10] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201.
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201.
[11] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247.
Wang Meihua, Wu Zhenxin, Zhou Zuguang. Finegrained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247.
[12] 乔思波, 庞善臣, 王敏, 等. 基于残差混合注意力机制的脑部CT图像分类卷积神经网络模型[J]. 电子学报, 2021, 49(5): 984-991.
Qiao Sibo, Pang Shanchen, Wang Min, et al. A convolutional neural network for brain CT image classification based on residual hybrid attention mechanism [J]. Acta Electronica Sinica, 2021, 49(5): 984-991.
[13] 尚远航, 余游江, 吴刚. 基于混合注意力机制的植物病害识别[J]. 塔里木大学学报, 2021, 33(2): 94-103.
Shang Yuanhang, Yu Youjiang, Wu Gang. Plant diseases recognition based on mixed attention mechanism [J]. Journal of Tarim University, 2021, 33(2): 94-103.
[14] 陆雅诺, 陈炳才. 基于注意力机制的小样本啤酒花病虫害识别[J]. 中国农机化学报, 2021, 42(3): 189-196.
Lu Yanuo, Chen Bingcai. Identification of hops pests and diseases in small samples based on attentional mechanisms [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 189-196.
[15] 王粉花, 张强, 黄超, 等. 融合双流三维卷积和注意力机制的动态手势识别[J]. 电子与信息学报, 2021, 43(5): 1389-1396.
Wang Fenhua, Zhang Qiang, Huang Chao, et al. Dynamic gesture recognition combining twostream 3D convolution with attention mechanisms [J]. Journal of Electronics & Information Technology, 2021, 43(5): 1389-1396.
[16] 李海丰, 韩红阳. 复杂背景下机场道面细带状结构病害检测算法[J]. 北京航空航天大学学报, 2022, 48(1): 36-44.
Li Haifeng, Han Hongyang. Algorithm for the detection of thin stripshaped structural diseases on airport pavement under complex background [J]. Journal of Beijing University of Aeronautics and Astronautic, 2022, 48(1): 36-44.
[17] 郑一力, 张露. 基于迁移学习的卷积神经网络植物叶片图像识别方法[J]. 农业机械学报, 2018, 49(S1): 354-359.
Zheng Yili, Zhang Lu. Plant leaf image recognition method based on transfer learning with convolutional neural networks [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 354-359.
[18] 陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2): 347-369.
Chen Foji, Zhu Feng, Wu Qingxiao, et al. A survey about image generation with generative adversarial nets [J]. Chinese Journal of Computers, 2021, 44(2): 347-369.
[19] Goodfellow I J, PougetAbadie J, Mirza M, et al. Generative adversarial networks [J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
[20] 熊方康, 陆玲, 曹廷荣, 等. 基于生成对抗网络的农作物叶片病害识别[J]. 计算机与现代化, 2020(11): 39-46.
Xiong Fangkang, Lu Ling, Cao Tingrong, et al. Crop leaf diseases recognition: a generative adversarial network based approach [J]. Computer and Modernization, 2020(11): 39-46.
[21] 胡龙辉, 王朝立, 孙占全, 等. 基于WGAN的图像识别方法[J]. 控制工程, 2020, 27(12): 2168-2175.
Hu Longhui, Wang Chaoli, Sun Zhanquan, et al. Image Recognition with WGAN [J]. Control Engineering of China, 2020, 27(12): 2168-2175.
[22] 邓源, 施一萍, 刘婕, 等. 结合双通道WGANGP的多角度人脸表情识别算法研究[J/OL]. 激光与光电子学进展: 1-19[2022-04-08]. http: //kns. cnki. net/kcms/detail/31. 1690. tn. 20210816. 1359. 034. html
[23] Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks [J]. Stat, 2017, 1050.
[24] 刘璐, 李建强, 陈适. 基于混合域注意力机制和残差网络的特纳综合征分类研究[J]. 中国数字医学, 2021, 16(2): 16-20.
Liu Lu, Li Jianqiang, Chen Shi. A classification method of turner syndrome based on mixed domain attention mechanism and residual network [J]. China Digital Medicine, 2021, 16(2): 16-20.
[25] 朱文球, 邹广, 曾志高. 融合层次特征和混合注意力的跟踪算法[J/OL]. 计算机应用: 1-14[2022-04-08].
|