[1] 徐进, 朱杰华, 杨艳丽, 等. 中国马铃薯病虫害发生情况与农药使用现状[J]. 中国农业科学, 2019, 52(16): 2800-2808. Xu Jin, Zhu Jiehua,Yang Yanli, et al. Status of major diseases and insect pests of potato and pesticide usage in China [J]. Scientia Agricultura Sinica, 2019, 52(16): 2800-2808. [2] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191. [3] 田海韬, 赵军, 蒲富鹏. 马铃薯芽眼图像的分割与定位方法[J]. 浙江农业学报, 2016, 28(11): 1947-1953. Tian Haitao, Zhao Jun, Pu Fupeng. A method for recognizing potato's bud eye [J]. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1947-1953. [4] Agarwal M, Gupta S K, Biswas K K. Development of efficient CNN model for Tomato crop disease identification-ScienceDirect [J]. Sustainable Computing: Informatics and Systems, 2020, 28. [5] Xie C, Shao Y, Li X, et al. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging [J]. Scientific Reports, 2015, 5: 16564. [6] 余小东, 杨孟辑, 张海清, 等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报, 2020, 51(10): 252-258. Yu Xiaodong, Yang Mengji, Zhang Haiqing, et al. Research and application of crop diseases detection method based on transfer learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 252-258. [7] 付中正, 何潇, 方逵, 等. 基于改进SSD网络的西兰花叶片检测研究[J]. 中国农机化学报, 2020, 41(4): 98-103. Fu Zhongzheng, He Xiao, Fang Kui, et al. Study on the detection of broccoli leaves based on the improved SSD network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 98-103. [8] 范振军, 李小霞. 基于ROI快速检测与融合特征的马铃薯病害识别[J]. 西南农业学报, 2019, 32(3): 544-550. Fan Zhenjun, Li Xiaoxia. Recognition of potato diseases based on fast detection and fusion features of ROI [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 544-550. [9] Brahimi M, Boukhalfa K, Moussaoui A. Deep learning for tomato diseases: classification and symptoms visualization [J]. Applied Artificial Intelligence, 2017, 31(4-6): 1-17. [10] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171. Zhang Jianhua, Kong Fantao, Wu Jianzhai,et al. Cotton disease identification model based on improved VGG convolution neural network [J]. Journal of China Agricultural University, 2018, 23(11): 161-171. [11] 张善文, 张晴晴, 李萍. 基于改进深度卷积神经网络的苹果病害识别[J]. 林业工程学报, 2019, 4(4): 107-112. Zhang Shanwen, Zhang Qingqing, Li Ping. Apple disease identification based on improved deep convolutional neural network [J]. China Forestry Science and Technology, 2019, 4(4): 107-112. [12] 杨森, 冯全, 张建华, 等. 基于深度学习与复合字典的马铃薯病害识别方法[J]. 农业机械学报, 2020, 51(7): 22-29. Yang Sen, Feng Quan, Zhang Jianhua, et al. Identification method for potato disease based on deep learning and composite dictionary [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 22-29. [13] 肖志云, 刘洪. 马铃薯典型病害图像自适应特征融合与快速识别[J]. 农业机械学报, 2017, 48(12): 26-32. Xiao Zhiyun, Liu Hong. Adaptive features fusion and fast recognition of potato typical disease images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 26-32. [14] 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185. Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185. [15] 曹燕, 李欢, 王天宝. 基于深度学习的目标检测算法研究综述[J]. 计算机与现代化, 2020(5): 63-69. Cao Yan, Li Huan, Wang Tianbao. A survey of research on target detection algorithms based on deep learning [J]. Computer and Modernization, 2020(5): 63-69. [16] 段仲静, 李少波, 胡建军. 深度学习目标检测方法及其主流框架综述[J]. 激光与光电子学进展, 2020, 57(12): 59-74. Duan Zhongjing, Li Shaobo, Hu Jianjun, et al. Review of deep learning based object detection methods and their mainstream frameworks [J]. Laser & Optoelectronics Progress, 2020, 57(12): 59-74. [17] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(99): 2999-3007. [18] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236, 253. Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236, 253. [19] Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks? [J]. Advances in Neural Information Processing Systems, 2014, 27. [20] 王丹丹, 何东健. 基于R-FCN 深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163. Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163.
|