[1] 赵久然, 王帅, 李明, 等. 玉米育种行业创新现状与发展趋势[J]. 植物遗传资源学报, 2018, 19(3): 435-446.
Zhao Jiuran, Wang Shuai, Li Ming, et al. Current status and perspective of maize breeding [J]. Journal of Plant Genetic Resources, 2018, 19(3): 435-446.
[2] 程洪, 史智兴, 尹辉娟, 等. 基于机器视觉的多个玉米籽粒胚部特征检测[J]. 农业工程学报, 2013(19): 145-151.
Cheng Hong, Shi Zhixing, Yin Huijuan, et al. Detection of multicorn kernel embryos characteristic using machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013(19): 145-151.
[3] Granitto P M, Navone H D, Verdes P F, et al. Weed seeds identification by machine vision [J]. Computers & Electronics in Agriculture, 2002, 33(2): 91-103.
[4] 王玉亮, 刘贤喜, 苏庆堂, 等. 多对象特征提取和优化神经网络的玉米种子品种识别[J]. 农业工程学报, 2010, 26(6): 199-204.
Wang Yuliang, Liu Xianxi, Su Qingtang, et al. Maize seeds varieties identification based on multiobject feature extraction and optimized neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 199-204.
[5] 韩仲志, 赵友刚, 杨锦忠. 基于籽粒RGB图像独立分量的玉米胚部特征检测[J]. 农业工程学报, 2010, 26(3): 222-226.
Han Zhongzhi, Zhao Yougang, Yang Jinzhong. Detection of embryo based on independent components for kernel RGB images in maize [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 222-226.
[6] 孟繁佳, 罗石, 孙红, 等. 霉变玉米种子实时检测分选装置的设计与试验[J]. 农业机械学报, 2021, 52(3): 153-159, 177.
Meng Fanjia, Luo Shi, Sun Hong, et al. Design and experiment of realtime detection and sorting device for maize seeds [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 153-159, 177.
[7] 傅隆生, 冯亚利, Elkamil Tola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
Fu Longsheng, Feng Yali, Elkamil Tola, et al. Image recognition method of multicluster kiwifruit in field based on convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211.
[8] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster RCNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209.
Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster RCNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209.
[9] Huang S, Fan X, Sun L, et al. Research on classification method of maize seed defect based on machine vision [J]. Journal of Sensors, 2019, 24(7): 1-9.
[10] 李尚平, 李向辉, 张可, 等. 改进YOLOv3网络提高甘蔗茎节实时动态识别效率[J]. 农业工程学报, 2019, 35(23): 185-191.
Li Shangping, Li Xianghui, Zhang Ke, et al. Increasing the realtime dynamic identification efficiency of sugarcane nodes by improved YOLOv3 network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 185-191.
[11] 闫建伟, 赵源, 张乐伟, 等. 改进FasterRCNN自然环境下识别刺梨果实[J]. 农业工程学报, 2019, 35(18): 144-151.
Yan Jianwei, Zhao Yuan, Zhang Lewei, et al. Recognition of Rosa roxbunghii in natural environment based on improved Faster RCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 144-151.
[12] 赵德安, 吴任迪, 刘晓洋. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 172-181.
Zhao Dean, Wu Ren Di, Liu Xiao Yang. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 172-181.
[13] 张思雨, 张秋菊, 李可. 采用机器视觉与自适应卷积神经网络检测花生仁品质[J]. 农业工程学报, 2020, 36(4): 269-277.
Zhang Siyu, Zhang Qiuju, Li Ke. Detection of peanut kernel quality based on machine vision and adaptive convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 269-277.
[14] 祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
Zhu Shiping, Zhuo Jiaxin, Huang Hua, et al. Wheat grain integrity image detection system based on CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 36-42.
[15] 陈满, 倪有亮, 金诚谦, 等. 基于机器视觉的大豆机械化收获质量在线监测方法[J]. 农业机械学报, 2021, 52(1): 91-98.
Chen Man, Ni Youliang, Jin Chengqian, et al. Online monitoring method of mechanized soybean harvest quality based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 52(1): 36-42.
[16] 薛勇, 王立扬, 张瑜, 等. 基于GoogLeNet深度迁移学习的苹果缺陷检测方法[J]. 农业机械学报, 2020, 51(7): 30-35.
Xue Yong, Wang Liyang, Zhang Yu, et al. Defect detection method of apples based on GoogLeNet deep transfer learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 36-42.
[17] 王丹丹, 何东健. 基于RFCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on RFCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163.
|