[1] 苏鸿, 温国泉, 谢玮, 等. 基于区域卷积神经网络模型的广西柑橘病虫害识别方法研究[J]. 西南农业学报, 2020, 33(4): 805-810.
Su Hong, Wen Guoquan, Xie Wei, et al. Research on citrus pest and disease recognition method in Guangxi based on regional convolutional neural network model [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 805-810.
[2] 王建涛, 吴叶兰, 廖禺, 等. 基于卷积神经网络的柑橘病叶高光谱分类[J]. 信息技术与信息化, 2020(3): 84-87.
[3] 张敏, 刘杰. 基于卷积神经网络的柑橘溃疡病识别方法[J]. 计算机应用, 2018, 38(Z1): 48-52, 76.
Zhang Min, Liu Jie. Recognition method of citrus canker disease based on convolution neural network [J]. Journal of Computer Applications, 2018, 38(Z1): 48-52, 76.
[4] Sharif M, Khan M A, Iqbal Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection [J]. Computers and Electronics in Agriculture, 2018, 150: 220-234.
[5] 任守纲, 贾馥玮, 顾兴健, 等. 反卷积引导的番茄叶部病害识别及病斑分割模型[J]. 农业工程学报, 2020, 36(12): 186-195.
Ren Shougang, Jia Fuwei, Gu Xingjian, et al. Recognition and segmentation model of tomato leaf diseases based on deconvolutionguiding [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 186-195.
[6] 孔建磊, 金学波, 陶治, 等. 基于多流高斯概率融合网络的病虫害细粒度识别[J]. 农业工程学报, 2020, 36(13): 148-157.
Kong Jianlei, Jin Xuebo, Tao Zhi, et al. Finegrained recognition of diseases and pests based on multistream Gaussian probability fusion network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 148-157.
[7] 张善文, 王振, 王祖良. 多尺度融合卷积神经网络的黄瓜病害叶片图像分割方法[J]. 农业工程学报, 2020, 36(16): 149-157.
Zhang Shanwen, Wang Zhen, Wang Zuliang. Method for image segmentation of cucumber disease leaves based on multiscale fusion convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 149-157.
[8] 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185.
Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185.
[9] 王昱潭, 朱超伟, 赵琛, 等. 基于Faster R-CNN的灵武长枣图像检测方法[J]. 计算机工程与应用, 2021, 57(4): 216-224.
Wang Yutan, Zhu Chaowei, Zhao Chen, et al. Image detection method of Lingwu long jujube based on Faster R-CNN [J]. Computer Engineering and Applications, 2021, 57(4): 216-224.
[10] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]. European conference on computer vision. Springer, Chan, 2016: 630-645.
[11] Pan S J. Qiang Y. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[12] Behroozikhazaei N, Malekl M R. A robust algorithm based on color features for grape cluster segmentation [J]. Computers and Electronics in Agriculture, 2017, 42: 41-49.
[13] Wang D, Song H, He D. Research advance on vision system of apple picking robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 59-69.
[14] Swietojanskl P, Ghoshal A, Rnals S. Convolutional neural networks for distant speech recognition [J]. IEEE Signal Processing Letters, 2014(9): 1120-1124.
[15] Rumpf T, Mahlein, A K, Steiner V, et al. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance[J]. Computers and Electronics in Agriculture, 2010, 74(1): 91-99.
[16] Xu Y, Imou K, Kaizu Y, et al. Twostage approach for detecting slightly overlapping strawberries using HOG descriptor [J]. Biosystems Engineering, 2013, 115(2): 144-153.
[17] Zhao C, Lee W S, He D. Immature green citrus detection based on colour feature and sum of absolute transformed difference (SATD) using colour images in the citrus grove [J]. Computers & Electronics in Agriculture, 2016, 124: 243-253.
[18] Wu X, DSahoo, Hoi S. Recent advances in deep learning for object detection [J]. Neurocomputing, 2020, 396: 39-64.
[19] Zhang Q, Zhang R M, Chen B. Research review of image recognition technology based on deep learning [J]. Journal of the Hebei Academy of Sciences, 2019, 36(3): 28-36.
[20] Goodridge W, Bernard M, Jordan R, et al. Intelligent diagnosis of diseases in plants using a hybrid MultiCriteria decision making technique [J]. Computers and Electronics in Agriculture, 2017, 133(6): 80-87.
[21] Xiang R. Image segmentation for whole tomato plant recognition at night [J]. Computers and Electronics in Agriculture, 2018, 154: 434-442.
[22] 张星, 高巧明, 潘栋, 等. 基于改进YOLOv3的田间复杂环境下菠萝拾捡识别研究[J]. 中国农机化学报, 2021, 42(1): 201-206.
Zhang Xing, Gao Qiaoming, Pan Dong, et al. Picking recognition research of pineapple in complex field environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(1): 201-206.
[23] 秦立峰, 张熹, 张晓茜. 基于高光谱病害特征提取的温室黄瓜霜霉病早期检测[J]. 农业机械学报, 2020, 51(11): 212-220.
Qin Lifeng, Zhang Xi, Zhang Xiaoqian. Early detection of cucumber downy mildew in greenhouse by hyperspectral disease differential feature extraction [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 212-220.
[24] 景亮, 王瑞. 基于双目相机与改进YOLOv3算法的果园行人检测与定位[J]. 农业机械学报, 2020, 51(9): 34-39, 25.
Jing Liang, Wang Rui. Orchard pedestrian detection and location based on binocular camera and improved YOLOv3 algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 34-39, 25.
[25] 袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334.
Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition base on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334.
[26] 姚青, 谷嘉乐, 吕军, 等. 改进RetinaNet的水稻冠层害虫为害状自动检测模型[J]. 农业工程学报, 2020, 36(15): 182-188.
Yao Qing, Gu Jiale, Lü Jun, et al. Automatic detection model for pest damage symptoms on rice canopy based on improved RetinaNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 182-188.
[27] 刘翱宇, 吴云志, 朱小宁, 等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报, 2021, 37(1): 67-74.
Liu Aoyu, Wu Yunzhi, Zhu Xiaoning, et al. Corn disease recognition base on deep residual network [J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1): 67-74.
|