[1] 何雄奎. 植保精准施药技术装备[J]. 农业工程技术, 2017, 37(30): 22-26.
[2] 何雄奎. 我国植保无人机喷雾系统与施药技术[J]. 农业工程技术, 2018, 38(9): 33-38.
[3] Lee W S, Alchanatis V, Yang C, et al. Sensing technologies for precision specialty crop production [J]. Computers and Electronics in Agriculture, 2010, 74(1): 2-33.
[4] Rosell J R, Sanz R. A review of methods and applications of the geometric characterization of crops in agricultural activities [J]. Computers & Electronics in Agriculture, 2012, 81: 124-141.
[5] 翟长远, 赵春江, Ning Wang, 等. 果园风送喷雾精准控制方法研究进展[J]. 农业工程学报, 2018, 34(10): 1-15.
Zhai Changyuan, Zhao Chunjiang, Ning Wang, et al. Research progress on precision control methods of airassisted spraying in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10): 1-15.
[6] 邓巍, 何雄奎, 张录达, 等. 自动对靶喷雾靶标红外探测研究[J]. 光谱学与光谱分析, 2008, 28(10): 2285-2289.
Deng Wei, He Xiongkui, Zhang Luda, et al. Target infrared detection in target spray [J]. Spectroscopy and spectral analysis, 2008, 28(10): 2285-2289.
[7] Zou W, Wang X, Deng W, et al. Design and test of automatic towardtarget sprayer used in orchard [C]. IEEE International Conference on Cyber Technology in Automation, IEEE, 2015.
[8] Giles D, Delwiche M, Dodd R. Sprayer control by sensing orchard crop characteristics: Orchard architecture and spray liquid savings [J]. Journal of Agricultural Engineering Research, 1989, 43(89): 271-289.
[9] MirandaFuentes A, RodríguezLizana A, Cuenca A, et al. Improving plant protection product applications in traditional and intensive olive orchards through the development of new prototype airassisted sprayers [J]. Crop Protection, 2017, 94: 44-58.
[10] Shalal N, Low T, Mccarthy C, et al. Orchard mapping and mobile robot localisation using onboard camera and laser scanner data fusionPart A: Tree detection [J]. Computers and Electronics in Agriculture, 2015, 119: 254-266.
[11] Shalal N, Low T, Mccarthy C, et al. Orchard mapping and mobile robot localisation using onboard camera and laser scanner data fusionPart B: Mapping and localization [J]. Computers and Electronics in Agriculture, 2015, 119: 267-278.
[12] 周良富, 薛新宇, 周立新, 等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报, 2017, 33(23): 80-86.
Zhou Liangfu, Xue Xinyu, Zhou Lixin, et al. Research status and prospect analysis of orchard variable spray technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 80-86.
[13] 张霖, 赵祚喜, 俞龙, 等. 超声波果树冠层测量定位算法与试验[J]. 农业工程学报, 2010, 26(9): 192-197.
Zhang Lin, Zhao Zuoxi, Yu Long, et al. Positioning algorithm for ultrasonic scanning of fruit tree canopy and its tests [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 192-197.
[14] Roper B E. Grove sprayer [P]. US: 4768713, 1988-09-06.
[15] Zaman Q U, Salyani M. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume [J]. Applied Engineering in Agriculture, 2004, 20(2): 173-178.
[16] Escolà A, Planas S, Rosell J R, et al. Performance of an ultrasonic ranging sensor in apple tree canopies [J]. Sensors, 2011, 11(3): 2459-2477.
[17] Zhai C, Wang X, Zhao C, et al. Orchard tree structure digital test system and its application [J]. Mathematical and Computer Modelling, 2011, 54(3-4): 1145-1150.
[18] 李秋洁, 郑加强, 周宏平, 等. 基于车载二维激光扫描的树冠体积在线测量[J]. 农业机械学报, 2016, 47(12): 309-314.
Li Qiujie, Zheng Jiaqiang, Zhou Hongping, et al. Online measurement of tree canopy volume using vehicleborne 2-D laser scanning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 309-314.
[19] Osterman A, Godea T, Hovar M, et al. RealTime positioning algorithm for variablegeometry airassisted orchard sprayer [J]. Computers and Electronics in Agriculture, 2013, 98: 175-182.
[20] Rosell J R, Llorens J, Sanz R, et al. Obtaining the threedimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning [J]. Agricultural & Forest Meteorology, 2009, 149(9): 1505-1515.
[21] Polo J, Sanz R, Llorens J, et al. A tractor mounted scanning LIDAR for the non destructive measurement of vegetative volume and surface area of tree row plantations: A comparison with conventional destructive measurements [J]. Biosystems Engineering, 2009, 102(2): 128-134.
[22] SanzCortiella R, LlorensCalveras J, Escolà A, et al. Innovative LIDAR 3D dynamic measurement system to estimate fruittree leaf area [J]. Sensors, 2011, 11(12): 5769-5791.
[23] Palacín J, Pallejà T, Tresanchez M, et al. Realtime treefoliage surface estimation using a ground laser scanner [J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1377-1383.
[24] Llop J, Gil E, Llorens J, et al. Testing the suitability of a terrestrial 2D LiDAR scanner for canopy characterization of greenhouse tomato crops [J]. Sensors, 2016, 16(9): 1435.
[25] 张富贵, 洪添胜, 王万章, 等. 数据融合技术在果树仿形喷雾中的应用[J]. 农业工程学报, 2006, 22(7): 119-122.
Zhang Fugui, Hong Tiansheng, Wang Wanzhang, et al. Application of data fusion technique to fruiter profile modeling spray [J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7): 119-122.
[26] Palleja T, Landers A J. Real time canopy density estimation using ultrasonic envelope signals in the orchard and vineyard [J]. Computers and Electronics in Agriculture, 2015, 115: 108-117.
[27] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72.
Qiu Xiaojing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72.
[28] Saponari M, Manjunath K, Yokomi R K. Quantitative detection of Citrus tristeza virus in citrus and aphids by realtime reverse transcriptionPCR (TaqMan) [J]. Journal of Virological Methods, 2008, 147(1): 43-53.
[29] Yvon M, Thébaud G, Alary R, et al. Specific detection and quantification of the phytopathogenic agent Candidatus Phytoplasma prunorum [J]. Molecular and Cellular Probes, 2009, 23(5): 227-234.
[30] Sankaran S, Mishra A, Ehsani R, et al. A review of advanced techniques for detecting plant diseases [J]. Computers and Electronics in Agriculture, 2010, 72(1): 1-13.
[31] 谢春燕, 吴达科, 王朝勇, 等. 基于图像和光谱信息融合的病虫害叶片检测系统[J]. 农业机械学报, 2013, 44(S1): 269-272.
Xie Chunyan, Wu Dake, Wang Chaoyong, et al. Insect pest leaf detection system based on information fusion of image and spectrum [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(S1): 269-272.
[32] 冯洁, 廖宁放, 赵波, 等. 多光谱成像技术诊断植物病虫害的人工神经网络模型[J]. 光学技术, 2008, 34(5): 717-720.
Feng Jie, Liao Ningfang, Zhao Bo, et al. Multispectral imaging techniques diagnosing plant diseases and insect pests using artificial neural networks [J]. Optical Technique, 2008, 34(5): 717-720.
[33] 柴阿丽. 基于计算机视觉和光谱分析技术的蔬菜叶部病害诊断研究[D]. 北京: 中国农业科学院, 2011.
[34] 秦淑芳. 基于图像处理技术的甘蓝型油菜的虫害程度检测[D]. 武汉: 武汉轻工大学, 2019.
[35] 李震, 邓忠易, 洪添胜, 等. 基于神经网络的实蝇成虫图像识别算法[J]. 农业机械学报, 2017, 48(S1): 129-135.
Li Zhen, Deng Zhongyi, Hong Tiansheng, et al. Image recognition algorithm for fruit flies based on BP neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 129-135.
[36] Tian Y, Zhao C, Lu S, et al. SVMbased multiple classifier system for recognition of wheat leaf diseases [C]. World Automation Congress. IEEE, 2010.
[37] Gao D Q, Liu F, Wang J. Quantitative analysis of multiple kinds of volatile organic compounds using hierarchical models with an electronic nose [J]. Sensors and Actuators B: Chemical, 2012, 161(1): 578-586.
[38] Li C, Krewer G, Kays S J. Blueberry postharvest disease detection using an electronic nose [C]. 2009 ASABE Annual International Meeting, 2009.
|