[1]
林君宇, 李奕萱, 郑聪尉, 等. 应用卷积神经网络识别花卉及其病症[J]. 小型微型计算机系统, 2019, 40(6): 1330-1335.
Lin Junyu, Li Yixuan, Zheng Congwei, et al. Classifying flowers and their diseases by using convolutional neural network [J]. Journal of Chinese Computer Systems, 2019, 40(6): 1330-1335.
[2]
刘建凤, 吉春明, 卫甜, 等. 月季主要病虫害的诊断与综合防治技术[J]. 江苏农业科学, 2019, 47(8): 17-119.
[3]
曹乐平. 基于机器视觉的植物病虫害实时识别方法[J]. 中国农学通, 2015, 31(20): 244-249.
[4]
汪京京, 张武, 刘连忠, 等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学, 2014(7): 1363-1370.
Wang Jingjing, Zhang Wu, Liu Lianzhong, et al. Summary of crop diseases and pests image recognition technology [J]. Computer Engineering & Science. 2014(7): 1363-1370.
[5]
曹静, 夏秀红. 月季常见病害的发生及其防治技术[J]. 农业工程技术(温室园艺), 2009(3): 72-73.
[6]
张开兴, 吕高龙, 贾浩, 等. 基于图像处理和BP神经网络的玉米叶部病害识别[J]. 中国农机化学报, 2019, 40(8): 122-126.
Zhang Kaixing, Lü Gaolong, Jia Hao, et al. Identification of corn leaf disease based on image processing and BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 122-126.
[7]
刘翠翠, 杨涛, 马京晶, 等. 基于PCASVM的麦冬叶部病害识别系统[J]. 中国农机化学报, 2019, 40(8): 132-136.
Liu Cuicui, Yang Tao, Ma Jingjing, et al. Identification system for leaf diseases of ophipogon japonicus based on PCASVM [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 132-136.
[8]
Arivazhagan S, Shebiah R N, Ananthi S, et al. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features [J]. Agricultural Engineering International: The CIGR ejournal, 2013, 15(1): 211-217.
[9]
付中正, 何潇, 方逵, 等. 基于改进SSD网络的西兰花叶片检测研究[J]. 中国农机化学报, 2020, 41(4): 92-97.
Fu Zhongzheng, He Xiao, Fang Kui, et al. Study on the detection of broccoli leaves based on the improved SSD network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 92-97.
[10]
孙鹏, 陈桂芬, 曹丽英. 基于注意力卷积神经网络的大豆害虫图像识别[J]. 中国农机化学报, 2020, 41(2): 171-176.
Sun Peng, Chen Guifen, Cao Liying. Image recognition of soybean pests based on attention convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 171-176.
[11]
陈梅香, 杨信延, 石宝才, 等. 害虫自动识别与计数技术研究进展与展望[J]. 环境昆虫学报, 2015, 37(1): 176-183.
Chen Meixiang, Yang Xinyan, Shi Baocai, el at. Research progress and prospect of technologies for automatic identifying and counting of pests [J]. Journal of Environmental Entomology, 2015, 37(1): 176-183.
[12]
Sabrol H, Satish K. Tomato plant disease classification in digital images using classification tree [C]. International Conference on Communication & Signal Processing. IEEE, 2016.
[13]
Jaisakthi S M, Mirunalini P, Thenmozhi D, et al. Grape leaf disease identification using machine learning techniques [C]. International Conference on Computational Intelligence in Data Science (ICCIDS), 2019.
[14]
Dechant C, WiesnerHanks T, Chen S, et al. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning [J]. Phytopathology, 2017: 1426-1432.
[15]
Jiang P, Chen Y, Liu B, et al. Realtime detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. IEEE Access, 2019, 7: 59069-59080.
[16]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Boston, MA, USA: IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[17]
Ozguven M M, Adem K. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms [J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 122537.
[18]
Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6).
[19]
Liu J, Wang X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network [J]. Frontiers in Plant Science, 2020, 11: 898.
[20]
Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv preprint arXiv: 1804.02767, 2018.
[21]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[22]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. Computer Vision and Pattern Recognition, 2016: 770-778.
[23]
陈正斌, 叶东毅, 朱彩霞, 等. 基于改进YOLOv3的目标识别方法[J]. 计算机系统应用, 2020, 29(1): 49-58.
Chen Zhengbin, Ye Dongyi, Zhu Caixia, et al. Object recognition method based on improved YOLOv3 [J]. Computer Systems & Applications, 2020, 29(1): 49-58.
[24]
Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
|