[1] 沈兆敏. 世界柑橘产销现状及做强我国柑橘产业的建议[J]. 果农之友, 2020(3): 1-3. [2] 程洪, Lutz D, Michael B, 等. 基于图像处理与支持向量机的树上苹果早期估产研究[J]. 农业机械学报, 2015, 46(3): 9-14, 22. [3] 黄小玉, 李光林, 马驰, 等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J].农业工程学报, 2018, 34(23): 142-148. Huang Xiaoyu, Li Guanglin, Ma Chi, et al. Green peach recognition based on improved discriminative regional feature integration algorithm in similar background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 142-148. [4] 闫建伟, 赵源, 张乐伟, 等. 改进Faster-RCNN自然环境下识别刺梨果实[J]. 农业工程学报, 2019, 35(18): 143-150. [5] Xu Y, Imou K, Kaizu Y, et al. Two-stage approach for detecting slightly overlapping strawberries using HOG descriptor [J]. Biosystems Engineering, 2013, 115(2): 144-153. [6] Arivazhagan S, Shebiah R N, Nidhyanandhan S S, et al. Fruit recognition using color and texture features [J]. Journal of Emerging Trends in Computing and Information Sciences, 2010, 2(1): 90-94. [7] 陶华伟, 赵力, 奚吉, 等.基于颜色及纹理特征的果蔬种类识别方法[J]. 农业工程学报, 2014, 30(16): 305-311. [8] 傅隆生, 冯亚利, Elkamil T, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211. [9] 张小花, 马瑞峻, 吴卓葵, 等. 基于机器视觉的果园成熟柑橘快速识别及产量预估研究[J]. 广东农业科学, 2019, 46(7): 156-161. [10] 廖崴, 郑立华, 李民赞, 等. 基于随机森林算法的自然光照条件下绿色苹果识别[J]. 农业机械学报, 2017, 48(S1): 86-91. [11] Kurtulmus F, Lee W S, Vardar A. Green citrus detection using “eigenfruit”, color and circular Gabor texture features under natural outdoor conditions [J]. Computers and Electronics in Agriculture, 2011, 78: 140-149. [12] Sengupta S, Lee W S. Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions [J]. Biosystems Engineering, 2014, 117: 51-61. [13] Zhao C Y, Lee W S, He D J. Immature green citrus detection based on color feature and sum of absolute transformed difference (SATD) using color images in the citrus grove [J]. Computers and Electronics in Agriculture, 2016, 124: 243-253. [14] Gan H, Lee W S, Alchanatis V, et al. Immature green citrus fruit detection using color and thermal images [J]. Computers and Electronics in Agriculture, 2018, 152: 117-125. [15] 熊俊涛, 刘振, 汤林越, 等. 自然环境下绿色柑橘视觉检测技术研究[J]. 农业机械学报, 2018, 49(4): 45-52. [16] 吕石磊, 卢思华, 李震, 等. 基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法[J]. 农业工程学报, 2019, 35(17): 205-214. [17] Wu X, Sahoo D, Steven C H H. Recent advances in deep learning for object detection [J]. Neurocomputing, 2020, 396: 39-64. [18] Redmon J, Farhadi A. YOLO v3: An incremental improvement [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2018. [19] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [20] Redmon J, Farhadi A. YOLO9000: better, faster,stronger [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525. [21] Gao H, Zhang L. Densely connected convolutional networks [C]. IEEE conference on Computer Vision and Pattern Recognition, 2017: 1-28. [22] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. IEEE conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|