[1] Liang Q, Xiang S, Hu Y, et al. PD 2 SENet: Computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157:518-529.
[2] Lecun Y, Bengio Y. Convolutional networks for images,speech, and time series [M]. Cambridge: MIT Press, 1995.
[3] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks [C]. NIPS. Curran Associates Inc. 2012.
[4] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, Taipei: IEEE Press, 2016: 2818-2826.
[5] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Taipei: IEEE Press, 2016: 770-778.
[6] Durmus H, Gunes E O, Kirci M. Disease detection on the leaves of the tomato plants by using deep learning[C]. 2017 6th International Conference on AgroGeoinformatics. Fairfax: 2017: 1-5.
[7] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNetlevel accuracy with 50x fewer parameters and< 0.5 mb model size [EB/OL]. https://arxiv. org/pdf/1602. 07360. pdf , 2018-11-13.
[8] Lü M, Zhou G, He M, et al. Maize leaf disease identification based on feature enhancement and DMSrobust alexnet [J]. IEEE Access, 2020, 8:57952-57966.
[9] 王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究[J]. 中国农机化学报, 2021. 42(2): 139- 145.
Wang Guowei, Liu Jiaxin. Research on corn disease recognition method based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 139-145.
[10] 李鑫然, 李书琴, 刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304.
Li Xinran, Li Shuqin, Liu Bin. Apple leaf disease detection method based on improved Faster R_CNN [J]. Computer Engineering, 2021, 47(11): 298-304.
[11] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE Press, 2017: 2117-2125.
[12] Zhang P, Yang L, DaoLiang L, et al. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment [J]. Computers and Electronics in Agriculture, 2020, 176: 105652.
[13] Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks [EB/OL]. https://arxiv. org/pdf/1905.11946.pdf, 2020-09-11.
[14] 肖经纬, 田军委, 王沁, 等. 基于改进残差网络的果实病害分类方法[J].计算机工程, 2020, 46(9): 221-225.
Xiao Jingwei, Tian Junwei, Wang Qin, et al. Fruit disease classification method based on improved residual network [J]. Computer Engineering, 2020, 46(9): 221-225.
[15] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[16] Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [J]. Fiber, 2015, 56(4): 3-7.
[17] 蒲秀夫, 宁羋, 雷印杰, 等. 基于二值化卷积神经网络的农业病虫害识别[J]. 中国农机化学报, 2020, 41(2): 177-182.
Pu Xiufu, Ning Qian, Lei Yinjie, et al. Identification of agricultural plant diseases based on binarized convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 177-182.
[18] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv:1704.04861, 2017.
[19] Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, USA: IEEE Press, 2018: 6848-6856.
[20] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE Press, 2020: 1580-1589.
[21] Wright L. New Deep Learning Optimizer, Ranger: Synergistic combination of RAdam+LookAhead for the best of both [EB/OL]. https://github. com/lessw2020/RangerDeepLearningOptimizer, 2019-08-20.
[22] Liu L, Jiang H, He P, et al. On the variance of the adaptive learning rate and beyond [J]. 2019.
|