[1] Kapach K, Barnea E, Mairon R, et al. Computer vision for fruit harvesting robots⁃state of the art and challenges ahead [J]. International Journal of Computational Vision & Robotics, 2012, 3(1/2): 4-34.
[2] 周俊, 刘锐, 张高阳. 基于立体视觉的水果采摘机器人系统设计[J]. 农业机械学报, 2010, 41(6): 158-162.
Zhou Jun, Liu Rui, Zhang Gaoyang. Design of fruit picking robot system based on stereo vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 158-162.
[3] 阮承治, 赵德安, 陈旭, 等. 双指型农业机器人抓取球形果蔬的控制器设计[J]. 中国农机化学报, 2019, 40(11): 169-175.
Ruan Chengzhi, Zhao Dean, Chen Xu, et al. Controller design for realizing double⁃finger agricultural robot to grasp spherical fruits and vegetables [J]. Journal of Chinese agricultural mechanization, 2019, 40(11): 169-175.
[4] 李寒, 张漫, 高宇, 等. 温室绿熟番茄机器视觉检测方法[J]. 农业工程学报, 2017, 33(Z1): 328-334, 388.
Li Han, Zhang Man, Gao Yu, et al. Green ripe tomato detection method based on machine vision in greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(Z1): 328-334, 388.
[5] Yamamoto K, Guo W, Yoshioka Y, et al. On plant detection of intact tomato fruits using image analysis and machine learning methods [J]. Sensors, 2014, 14(7): 12191-12206.
[6] 赵杰文, 刘木华, 杨国彬. 基于HIS颜色特征的田间成熟番茄识别技术[J]. 农业机械学报, 2004, 35(5): 122-124, 135.
Zhao Jiewen, Liu Muhua, Yang Guobin. Discrimination of mature tomato based on HIS color space in natural outdoor scenes [J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(5): 122-124, 135.
[7] 陶彦辉, 尹君驰, 方菲. 基于RGB颜色模型的番茄识别系统设计[J]. 机械研究与应用, 2015, 28(1): 159-160, 163.
Tao Yanhui, Yin Junchi, Fang Fei. Design of tomato identification system based on RGB color model [J]. Mechanical Research and Application, 2015, 28(1): 159-160, 163.
[8] 王红珠, 崔永杰. 基于计算机视觉的番茄颜色检测研究[J]. 农业技术与装备, 2017(1): 49-51.
Wang Hongzhu, Cui Yongjie. Tomato color detection research based on computer vision [J]. Agricultural Technology and Equipment, 2017(1): 49-51.
[9] 马翠花, 张学平, 李育涛, 等. 基于显著性检测与改进Hough变换方法识别未成熟番茄[J]. 农业工程学报, 2016, 32(14): 219-226.
Ma Cuihua, Zhang Xueping, Li Yutao, et al. Identification of immature tomatoes base on salient region detection and improved Hough transform method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 219-226.
[10] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[11] Girshick R. Fast R⁃CNN [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[12] Ren S, He K, Girshick R, et al. Faster R⁃CNN: Towards real⁃time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[13] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European Conference on Computer Vision, 2016.
[14] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[15] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified real⁃time object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[16] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv preprint arXiv, 1804. 02767, 2018.
[17] 邢艳芳, 卓文鑫, 段红秀. 基于MobileNet的敏感图像识别系统设计[J]. 电视技术, 2018, 42(7): 53-56.
Xing Yanfang, Zhuo Wenxin, Duan Hongxiu. Design of sensitive image recognition system based on MobileNet [J]. Television Technology, 2018, 42(7): 53-56.
[18] 罗莎莎. 基于MobileNet⁃SSD模型的道路目标识别研究及其安卓应用开发[D]. 广州: 华南理工大学, 2019.
Luo Shasha. Road target recognition based on MobileNet⁃SSD model technical research and its Android APP development [D]. Guangzhou: South China University of Technology, 2019.
[19] Mao Q C, Sun H M, Liu Y B, et al. Mini⁃YOLOv3: Real⁃time object detector for embedded applications [J]. IEEE Access, 2019, 7: 133529-133538.
[20] Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. Computer Vision and Pattern Recognition arXiv, Preprint arXiv: 1704.04861, 2017.
|