[1] 李凯, 袁鹤. 植物病害生物防治概述 [J]. 山西农业科学, 2012, 40(7): 807-810.
Li Kai, He Yuan. Review on biological control of plant diseases [J]. Journal of Shanxi Agricultural Sciences, 2012, 40(7): 807-810.
[2] 王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析 [J]. 农业机械学报, 2016, 47(9): 266-277.
Wang Xiangyu, Wen Haojie, Li Xinxing, et al. Research progress analysis of mainly agricultural diseases detection and early warning technologies [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 266-277.
[3] Sugiura R, Tsuda S, Tamiya S, et al. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle [J]. Biosystems engineering, 2016, 148: 1-10.
[4] 蒲秀夫, 宁芊, 雷印杰, 等. 基于二值化卷积神经网络的农业病虫害识别 [J]. 中国农机化学报, 2020, 41(2): 177-182.
Pu Xiufu, Ning Qian, Lei Yinjie,et al. Identification of agricultural plant diseases based on binarized convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 177-182.
[5] 张开兴, 吕高龙, 贾浩, 等. 基于图像处理和BP神经网络的玉米叶部病害识别 [J]. 中国农机化学报, 2019, 40(8): 122-126.
Zhang Kaixing, Lü Gaolong, Jia Hao, et al. Identification of corn leaf disease based on image processing and BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 122-126.
[6] 李娟, 朱学岩, 葛凤丽, 等. 基于计算机视觉的水下海参识别方法研究 [J]. 中国农机化学报, 2020, 41(7): 171-177.
Li Juan, Zhu Xueyan, Ge Fengli, et al.Research on underwater sea cucumber identification based on computer vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 171-177.
[7] 张善文, 孔韦韦, 王震. 基于稀疏表示字典学习的植物分类方法 [J]. 浙江农业学报, 2017, 29(2): 338-344.
Zhang Shanwen, Kong Weiwei, Wang Zhen. Plant classification method based on dictionary learning with sparse representation [J]. Acta Agriculturae Zhejiangensis, 2017, 29(2): 338-344.
[8] 马超, 袁涛, 姚鑫锋, 等. 基于HOG+SVM的田间水稻病害图像识别方法研究 [J]. 上海农业学报, 2019, 35(5): 131-136.
Ma Chao, Yuan Tao, Yao Xinfeng, et al. Study on image recognition method of rice disease in field based on HOG + SVM [J]. Acta Agriculturae Shanghai, 2019, 35(5): 131-136.
[9] Tester, Mark, Langridge, et al. Breeding technologies to increase crop production in a changing world [J]. Science, 2010.
[10] Yi D, Lei Z, Li S Z. Age estimation by multiscale convolutional network [C]. 12th Asian Conference on Computer Vision, Singapore; Springer, 2014: 144-158.
[11] 王文明, 肖宏儒, 陈巧敏, 等. 基于图像处理的茶叶智能识别与检测技术研究进展分析 [J]. 中国农机化学报, 2020, 41(7): 178-184.
Wang Wenming, Xiao Hongru, Chen Qiaomin, et al. Research progress analysis of tea intelligent recognition and detection technology based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 178-184.
[12] 郭小清, 范涛杰, 舒欣. 基于改进MultiScale AlexNet的番茄叶部病害图像识别 [J]. 农业工程学报, 2019, 35(13): 162-169.
Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved MultiScale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169.
[13] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别 [J]. 农业工程学报, 2020, 36(7): 184-191.
Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191.
[14] Srdjan S, Marko A, Andras A, et al. Deep neural networks based recognition of plant diseases by leaf image classification [J]. Computational Intelligence and Neuroence, 2016:1-11.
[15] Ferentinos K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture, 2018, 145: 311-318.
[16] 何欣, 李书琴, 刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程, 2021, 47(5): 285-291, 300.
He Xin, Li Shuqin, Liu Bin. Grap leaf disease identification based on multiscale residual network [J]. Computer Engineering, 2021, 47(5): 285-291, 300.
[17] 方晨晨, 石繁槐. 基于改进深度残差网络的番茄病害图像识别 [J]. 计算机应用, 2020, 40(S1): 203-208.
Fang Chenchen, Shi Fanhuai. Image recognition of tomato diseases based on improved deep residual network [J]. Journal of Computer Applications, 2020, 40(S1): 203-208.
[18] 曾伟辉, 李淼, 张健, 等. 面向农作物病害识别的高阶残差卷积神经网络研究 [J]. 中国科学技术大学学报, 2019, 49(10): 781-790.
Zeng Weihui, Li Miao, Zhang Jian, et al. Research on highorder residual convolution neural network for crop disease recognition application [J]. Journal of University of Science and Technology of China, 2019, 49(10): 781-790.
[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Conference on Computer Vision and Pattern Recognition, USA; IEEE, 2016: 770-778.
[20] Hu H, Peng R, Tai Y W, et al. Network trimming: A datadriven neuron pruning approach towards efficient deep architectures [J]. arXiv preprint arXiv:1607.03250, 2016.
[21] Tian Q, Arbel T, Clark J J. Efficient gender classification using a deep ldapruned net [J]. arXiv preprint arXiv:1704.06305, 2017.
[22] Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient inference [J]. arXiv preprint arXiv:1611.06440, 2016.
[23] Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convnets[J]. arXiv preprint arXiv:1608.08710, 2016.
[24] 王丹丹, 何东健. 基于RFCN深度卷积神经网络的机器人疏果前苹果目标的识别 [J]. 农业工程学报, 2019, 35(3): 156-163.
Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on RFCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163.
[25] 陈锋军, 朱学岩, 周文静, 等. 基于无人机航拍与改进YOLOv3模型的云杉计数 [J]. 农业工程学报, 2020, 36(22): 22-30.
Chen Fengjun, Zhu Xueyan, Zhou Wenjing, et al. Spruce counting method based on improved YOLOv3 model in UVA images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 22-30.
|