[1] Link H. Significance of flower and fruit thinning on fruit quality [J]. Plant Growth Regulation, 2000, 31(1-2): 17-26.
[2] Dennis F G. The history of fruit thinning [J]. Plant Growth Regulation, 2000, 31(1-2):1-16.
[3] 杨刚, 张杰, 田佶, 等. 3种疏除剂在梨树疏花疏果上的效应[J]. 北京农学院学报, 2017, 32(1): 18-23.
Yang Gang, Zhang Jie, Tian Ji, et al. Study on thinning effects of three thinning agents to pear flowers and fruits [J]. Journal of Beijing University of Agriculture, 2017, 32(1): 18-23.
[4] Kapach K, Barnea E, Mairon R, et al. Computer vision for fruit harvesting robotsstate of the art and challenges ahead [J]. International Journal of Computational Vision And Robotics, 2012.
[5] 张星, 高巧明, 潘栋, 等. 基于改进YOLOv3的田间复杂环境下菠萝拾捡识别研究[J]. 中国农机化学报, 2021, 42(1): 201-206.
Zhang Xing, Gao Qiaoming, Pan Dong, et al. Picking recognition research of pineapple in complex field environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(1): 201-206.
[6] 李龙, 彭彦昆, 李永玉, 等. 基于纹理和梯度特征的苹果伤痕与果梗/花萼在线识别[J]. 农业机械学报, 2018, 49(11): 328-335.
Li Long, Peng Yankun, Li Yongyu, et al. Online identification of apple scarring and stems/calyxes based on texture and edge gradient features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 328-335.
[7] Dias P A, Tabb A, Medeiros H. Apple flower detection using deep convolutional networks [J]. Computers in Industry, 2018, 99: 17-28.
[8] 王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
Wang Dandan, He Dongjian.Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering. 2019, 35(3): 156-163.
[9] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in nonstructural environment based on Mask R-CNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846.
[10] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLOv3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206.
Xiong Juntao, Zheng Zhenhui, Liang Jiaen, et al. Citrus detection method in night environment based on improved YOLOv3 network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 199-206.
[11] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv eprints, 2018.
[12] Wang C Y, Liao H, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020.
[13] 吕铄, 蔡烜, 冯瑞. 基于改进损失函数的YOLOv3网络[J]. 计算机系统应用, 2019, 28(2): 1-7.
Lü Shuo, Cai Xuan, Feng Rui. YOLOv3 network based on improved loss function [J]. Computer Systems & Applications, 2019, 28(2): 1-7.
[14] Zheng Z, Wang P, Liu W, et al. DistanceIoU Loss: Faster and better learning for bounding box regression [J]. arXiv, 2019.
[15] H Rezatofighi, Tsoi N, JY Gwak, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.
[16] Yun S, Han D, Chun S , et al. CutMix: Regularization strategy to train strong classifiers with localizable features [C]. International Conference on Computer Vision, 2019.
[17] 张宏鸣, 付振宇, 韩文霆, 等. 基于改进YOLO的玉米幼苗株数获取方法[J]. 农业机械学报, 2021, 52(4): 221-229.
Zhang Hongming, Fu Zhenyu, Han Wenting, et al. Detection method of maize seedlings number based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 221-229.
[18] 金耀, 何秀文, 万世主, 等. 基于YOLOv3的生猪个体识别方法[J]. 中国农机化学报, 2021, 42(2): 178-183.
Jin Yao, He Xiuwen, Wan Shizhu, et al. Individual pig identification method based on YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 178-183.
|