[1]
陈亮, 裴晓辉, 刘韵婷. 基于LSTM的大棚环境变量预测[J]. 沈阳理工大学学报, 2018, 37(5): 13-19.
[2]
徐宇, 冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178.
Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178.
[3]
张园园, 尤新刚, 王虎, 等. 基于ELM算法的设施农业小气候环境因子预测模型[J]. 中国农机化学报, 2016, 37(2): 80-84.
Zhang Yuanyuan, You Xingang, Wang Hu,et al. Prediction model of protected agriculture environment factors based on Extreme Learning Machine algorithm [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(2): 80-84.
[4]
周翔宇, 程勇, 王军. 基于改进深度信念网络的农业温室温度预测方法[J]. 计算机应用, 2019, 39(4): 1053-1058.
[5]
Afroz Z, Shafiullah G, Urmee T, et al. Modeling techniques used in building HVAC control systems: A review [J]. Renewable & Sustainable Energy Reviews, 2018, 83: 64-84.
[6]
Afram A, JanabiSharifi F. Review of modeling methods for HVAC systems [J]. Applied Thermal Engineering, 2014, 67(1-2): 507-519.
[7]
Richard J P. Timedelay systems: An overview of some recent advances and open problems [J]. Automatica, 2003, 39(10): 1667-1694.
[8]
Zhang W X. Development of an adaptive Smith predictorbased selftuning \\\\{PI\\\\ controller for an \\\\{HVAC\\\\ system in a test room [J]. Energy and Buildings, 2008, 40(12): 2244-2252.
[9]
Fliess M, Marquez R, Mounier H. An extension of predictive control, PID regulators and Smith predictors to some linear delay systems [J]. International Journal of Control, 2002, 75(10): 728-743.
[10]
Xu M, Li S. Practical generalized predictive control with decentralized identification approach to HVAC systems [J]. Energy Conversion & Management, 2007, 48(1): 292-299.
[11]
胥芳, 张立彬, 陈教料, 等. 玻璃温室小气候温湿度动态模型的建立与仿真[J]. 农业机械学报, 2005, 36(11): 102-105.
[12]
李惟毅, 李兆力, 雷海燕, 等. 农业温室微气候研究综述与理论模型分析[J]. 农业机械学报, 2005, 36(5): 137-140.
[13]
顾寄南, 毛罕平. 温室环境智能化控制数学模型的研究[J]. 农业机械学报, 2001, 32(6): 63-65, 80.
[14]
郦伟, 董仁杰, 汤楚宙, 等. 日光温室的热环境理论模型[J]. 农业工程学报, 1997(2): 160-163.
[15]
韩旭明. Elman神经网络的应用研究[D]. 天津: 天津大学, 2006.
[16]
刘荣. 基于Elman神经网络的短期负荷预测[D]. 杭州: 浙江大学, 2013.
[17]
任丽娜. 基于Elman神经网络的中期电力负荷预测模型研究[D]. 兰州: 兰州理工大学, 2007.
[18]
宋明达. 基于改进遗传算法优化Elman神经网络的短期负荷预测[D]. 衡阳: 南华大学, 2020.
Song Mingda. Shortterm load forecasting based on improved genetic algorithm to optimize Elman neural network [D]. Hengyang: University of South China, 2020.
[19]
谢秋菊, 郑萍, 包军, 等. 基于深度学习的密闭式猪舍内温湿度预测模型[J]. 农业机械学报, 2020, 51(10): 353-361.
Xie Qiuju, Zheng Ping, Bao Jun, et al. Thermal environment prediction and validation based on deep learning algorithm in closed pig house [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 353-361.
|