[1]
陆江林, 石磊, 张玉同. 我国棉花总产量波动原因分析[J]. 中国农机化学报, 2016, 37(8): 248-251.
Lu Jianglin, Shi Lei, Zhang Yutong. Analyze the fluctuations of total cotton production in China [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(8): 248-251.
[2]
Fayek H M, Lech M, Cavedon L. Evaluating deep learning architectures for speech emotion recognition [J]. Neural Networks, 2017, 92(2): 60-68.
[3]
MR CostaJussà, Allauzen A, Barrault L, et al. Introduction to the special issue on deep learning approaches for machine translation [J]. Computer Speech & Language, 2017, 46(11): 367-373.
[4]
Xing J, Li K, Hu W, et al. Diagnosing deep learning models for high accuracy age estimation from a single image [J]. Pattern Recognition, 2017, 66: 106-116.
[5]
刘斌, 何进荣, 李远成, 等. 基于分布式神经网络的苹果价格预测方法[J]. 计算机应用, 2020, 40(2): 369-374.
Liu Bin, He Jinrong, Li Yuancheng, et al. Apple price prediction method based on distributed neural network [J]. Journal of Computer Applications, 2020, 40(2): 369-374.
[6]
吴叶, 刘婷婷, 方少勇. 基于MIVGABP神经网络的我国棉价预测研究[J]. 棉纺织技术, 2018, 46(7): 77-80.
Wu Ye, Liu Tingting, Fang Shaoyong. Forecast of CN cotton B based on MIVGABP neural network [J]. Cotton Textile Technology, 2018, 46(7): 77-80.
[7]
郭超. 农产品价格数据挖掘与趋势预测模型的研究[D]. 济南: 山东大学, 2009.
Guo Chao. Farm price data mining and tendency forecast model research [D]. Jinan: Shandong University, 2009.
[8]
闫庆华, 刘维忠, 秦子. 国际棉花现货价格波动及短期预测研究[J]. 资源开发与市场, 2017, 33(5): 575-578, 640.
Yan Qinghua, Liu Weizhong, Qin Zi. Study on fluctuation of international cotton spot price and short term prediction [J]. Resource Development & Market, 2017, 33(5): 575-578, 640.
[9]
赵梅, 刘维忠. ARIMA和平滑ARIMA模型的中国棉花价格短期预测比较[J]. 贵州农业科学, 2015, 43(11): 206-208.
Zhao Mei, Liu Weizhong. Comparison of shortterm cotton price forecasted by ARIMA model and smooth ARIMA model in China [J]. Guizhou Agricultural Sciences, 2015, 43(11): 206-208.
[10]
Hudson D, K Coble. Harvest contract price volatility for cotton [J]. Journal of Futures Markets, 1999, 19(6): 717-733.
[11]
Bailey D V, Brorsen B W, Richardson J W. Dynamic stochastic simulation of daily cash and futures cotton prices [J]. Southern Journal of Agricultural Economics, 1984, 16(2): 109-116.
[12]
俞书傲. 气候变化对农作物生产的影响——以浙江为例的实证研究[D]. 杭州: 浙江大学, 2019.
Yu Shuao. The impact of climate change on crop production: An empirical study in Zhejiang, China [D]. Hangzhou: Zhejiang University, 2019.
[13]
解伟, 魏玮, 崔琦. 气候变化对中国主要粮食作物单产影响的文献计量Meta分析[J]. 中国人口·资源与环境, 2019, 29(1): 82-88.
Xie Wei, Wei Wei, Cui Qi. The impacts of climate change on the yield of staple crops in China: A Metaanalysis [J]. China Population Resources and Environment, 2019, 29(1): 82-88.
[14]
王亚飞, 廖顺宝. 气候变化对粮食产量影响的研究方法综述[J]. 中国农业资源与区划, 2018, 39(12): 59-68.
Wang Yafei, Liao Shunbao. Impacts of climate change on grain yield: A review of research methods [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 59-68.
[15]
赵东东, 赵雅丽, 赵秉强, 等. 基于PCALSTM小麦叶片水分检测研究[J]. 中国农机化学报, 2019, 40(3): 154-158, 184.
Zhao Dongdong, Zhao Yali, Zhao Binqiang, et al. Study on wheat leaf moisture detection based on PCALSTM [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 154-158, 184.
[16]
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures [J]. Neural Networks, 2005, 18(56): 602-610.
[17]
彭红星, 郑楷航, 黄国彬, 等. 基于BP、LSTM和ARIMA模型的蔬菜价格预测[J]. 中国农机化学报, 2020, 41(4): 193-199.
Peng Hongxing, Zheng Kaihang, Huang Guobin, et al. Vegetable price prediction based on BP, LSTM and ARIMA models [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 193-199.
[18]
滕金玲, 柳平增, 张艳, 等. 基于Prophet的生姜价格预测研究[J]. 中国农机化学报, 2020, 41(8): 211-216.
Teng Jinling, Liu Pingzeng, Zhang Yan, et al. Research on ginger price forecast based on Prophet [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 211-216.
|