[1]
施盛华. 基于物联网与图像识别的太阳能果园虫害监测系统研发[D]. 杭州: 浙江科技学院, 2019.
Shi Shenghua. Research and development of inseet pest monitoring system for solar garden based on Internet of Things and image recognition [D]. Hangzhou: Zhejiang University of Science and Technology, 2019.
[2]
苏一峰. 基于物联网的小麦病虫害动态气象模型和远程诊断方法研究[D]. 北京: 中国农业科学院, 2016.
[3]
赵洁. 基于图像处理的水培黄瓜叶片病斑识别系统设计[D]. 西安: 陕西科技大学, 2019.
Zhao Jie. Design of hydroponic cucumber leaf spot recognition system based on image processing [D]. Xian: Shaanxi University of Science and Technology, 2019.
[4]
吴桐. 基于物联网与图像识别的玉米病虫害诊断与预防系统[D]. 长春: 吉林农业大学, 2013.
Wu Tong. Based on Internet of Things and image recognition of corn plant diseases and insect pests diagnosis and prevention system [D]. Changchun: Jilin Agricultural University, 2013.
[5]
韩文霆, 崔利华, 陈微, 等. 桁架式可移动作物生长远程监控系统设计[J]. 农业工程学报, 2014, 30(13): 160-168.
Han Wenting, Cui Lihua, Chen Wei, et al. Design of movable remote crop monitoring system on fixed truss [J]. Transactions of the CSAE, 2014, 30(13): 160-168.
[6]
廖煊龙. 面向智能视频监控的目标检测和行为识别技术研究[D]. 成都: 电子科技大学, 2019.
Liao Xuanlong. Research of object detection and behavior recognition technology in intelligent video surveillance [D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[7]
马浚诚, 李鑫星, 温皓杰, 等. 面向叶类蔬菜病害识别的温室监控视频采集系统[J]. 农业机械学报, 2015, 46(3): 282-287.
[8]
高蒙. 基于机智云平台的远程监控系统开发关键技术研究[D]. 西安: 西安理工大学, 2019.
Gao Meng. Research on key technologies of remote monitoring system development based on intelligent cloud platform [D]. Xian: Xian University of technology, 2019.
[9]
赵兵. 基于深度学习的葡萄叶片分割[D]. 兰州: 甘肃农业大学, 2018.
Zhao Bing. Grape Leaf Segmentation based on Deep Learning [D]. Lanzhou: Gansu Agricultural University, 2018.
[10]
端辉. 基于YOLO的多尺度快速行人检测算法研究与应用[D]. 大连: 大连理工大学, 2019.
Duan Hui. Research and application of multiscale fast pedestrian detection algorithm based on YOLO [D]. Dalian: Dalian University of Technology, 2019.
[11]
汪文强, 张国平, 徐洪波, 等. 基于云平台的远程监控系统的设计与实现[J]. 信息技术, 2019, 43(11): 72-77.
Wang Wenqiang, Zhang Guoping, Xu Hongbo, et al. Design and implementation of remote monitoring system based on cloud platform [J]. Information Technology, 2019, 43(11): 72-77.
[12]
曹静. 基于视频图像的大棚白菜叶部病害识别与预警系统设计与实现[D]. 保定: 河北农业大学, 2019.
Cao Jing. Design and implementation of leaf disease recognition and early warning system for Chinese cabbage in greenhouse based on video image [D]. Baoding: Hebei Agricultural University, 2019.
[13]
管军霖, 智鑫. 基于YOLOv4卷积神经网络的口罩佩戴检测方法[J]. 现代信息科技, 2020, 4(11): 9-12.
Guan Junlin, Zhi Xin. Mask wearing detection method based on YOLOv4 convolutional neural network [J]. Modern Information Technology, 2020, 4(11): 9-12.
[14]
李振东. 智能葡萄大棚监测系统设计[D]. 淮南: 安徽理工大学, 2019.
Li Zhendong. Design of intelligent grape greenhouse monitoring system [D]. Huainan: Anhui University of Science & Technology, 2019.
[15]
Zhao Z, Cui X, Zhang H. Cloud storage technology in video surveillance [J]. Advanced Materials Research, 2012, 532-533: 1334-1338.
[16]
Ahmadi M, Ouarda W, Alimi A M. Efficient and fast objects detection technique for intelligent video surveillance using transfer learning and finetuning [J]. Arabian Journal for Science and Engineering, 2020.
[17]
Huang G, Liu Z, Laurens V, et al. Densely connected convolutional networks [C]. IEEE Computer Society. IEEE Computer Society, 2016.
[18]
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [J]. IEEE, 2016.
[19]
Salih T A, Ali A J, Ahmed M N. Deep learning convolution neural network to detect and classify tomato plant leaf diseases [J]. Open Access Library Journal, 2020, 7(5): 1-12.
[20]
Xia C, Lee J M, Yan L, et al. Plant leaf detection using modified active shape models [J]. Biosystems Engineering, 2013, 116(1): 23-35.
[21]
Mattihalli C, Gedefaye E, Endalamaw F, et al. Plant leaf diseases detection and automedicine [J]. Internet of Things, 2018, 1-2: 67-73.
|