[1] 刘孟军, 王玖瑞, 刘平, 等. 中国枣生产与科研成就及前沿进展[J]. 园艺学报, 2015, 42(9): 1683-1698.Liu Mengjun, Wang Jiurui, Liu Ping, et al. Historical achievements and frontier advances in the production and research of Chinese jujube (ziziphus jujuba) in China [J]. Acta Horticulturae Sinica, 2015, 42(9): 1683-1698.
[2] 刘孟军, 王玖瑞. 新中国果树科学研究70年——枣[J]. 果树学报, 2019, 36(10): 1369-1381.Liu Mengjun, Wang Jiurui. Fruit scientific research in New China in the past 70 years: Chinese jujube [J]. Journal of Fruit Science, 2019, 36(10): 1369-1381.
[3] 阳灵燕, 张红燕, 陈玉峰, 等. 机器学习在农作物品种识别中的应用研究进展[J]. 中国农学通报, 2020, 36(30): 158-164.
Yang Lingyan, Zhang Hongyan, Chen Yufeng, et al. The application of machine learning in crop variety recognition: A review [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 158-164.
[4] 苏军, 饶元, 张敬尧, 等. 基于GA优化SVM的干制红枣品种分类方法[J]. 洛阳理工学院学报(自然科学版), 2018, 28(4): 65-69, 93.
Su Jun, Rao Yuan, Zhang Jingyao, et al. Study on classification method of jujube varieties based on GA optimized SVM [J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2018, 28(4): 65-69, 93.
[5] Sabanci K. Different apple varieties classification using KNN and MLP algorithms [J]. International Journal of Intelligent Systems and Applications in Engineering, 2016, 4(S1): 166-169.
[6] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325.
Zhang Ke, Feng Xiaohan, Guo Yurong, et al. Overview of deep convolutional neural networks for image classification [J]. Journal of Image and Graphics, 2021, 26(10): 2305-2325.
[7] Krizhevsky A, Sutskever I, Hinton G E. Image Net classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90.
[8] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv Preprint arXiv: 1409.1556, 2014.
[9] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[10] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[11] 余游江, 喻彩丽, 尚远航, 等. 基于Stacking模型的红枣品种分类识别[J]. 北方园艺, 2022(8): 139-148.Yu Youjiang, Yu Caili, Shang Yuanhang, et al. Classification and recognition of jujube varieties based on Stacking model fusion [J]. Northern Horticulture, 2022(8): 139-148.
[12] ElKahlout M I, AbuNaser S S. Peach type classification using deep learning [J]. International Journal of Academic Engineering Research, 2019, 3(12).
[13] 倪建功, 杨昊岩, 李娟, 等. 基于改进型AlexNet的花生荚果品种识别[J]. 花生学报, 2021, 50(4): 14-22.
Ni Jiangong, Yang Haoyan, Li Juan, et al. Variety identification of peanut pod based on improved AlexNet [J].Journal of Peanut Science, 2021, 50(4): 14-22.
[14] 赵腾飞, 胡国玉, 周建平, 等. 卷积神经网络算法在核桃仁分类中的研究[J]. 中国农机化学报, 2022, 43(6): 181-189.
Zhao Tengfei, Hu Guoyu, Zhou Jianping, et al. Research on convolutional neural network algorithm for walnut kernel classification identification [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 181-189.
[15] Hu J, Shen L, Sun G. Squeeze and excitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[16] 苏宝峰, 沈磊, 陈山, 等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报, 2021, 52(11): 226-233, 252.
Su Baofeng, Shen Lei, Chen Shan, et al. Multifeatures identification of grape cultivars based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 226-233, 232.
[17] 张继成, 李德顺. 基于深度残差学习的成熟草莓识别方法[J]. 中国农机化学报, 2022, 43(2): 136-142.
Zhang Jicheng, Li Deshun. Ripe strawberry recognition method based on deep residual learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 136-142.
[18] 耿磊, 黄亚龙, 郭永敏. 基于融合注意力机制的苹果品种分类方法[J]. 农业机械学报, 2022, 53(6): 304-310, 369.
Geng Lei, Huang Yalong, Guo Yongmin. Apple variety classification method based on fusion attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 304-310, 369.
[19] 马岽奡, 唐娉, 赵理君, 等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021, 26(3): 487-502.
Ma Donggao, Tang Ping, Zhao Lijun, et al. Review of data augmentation for image in deep learning [J]. Journal of Image and Graphics, 26(3): 487-502.
[20] Peng G, Tuo X, Shen T, et al. Recognition of rock microfracture signal based on deep convolution neural network inception algorithm [J]. IEEE Access, 2021, 9: 89390-89399.
[21] 黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 178-184.
Huang Yinglai, Ai Xin. Research on classification of corn leaf disease image by improved residual network [J]. Computer Engineering and Applications, 2021, 57(23): 178-184.
[22] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[23] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626.
|