English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (6): 201-207.DOI: 10.13733/j.jcam.issn.2095-5553.2024.06.030

• 农业智能化研究 • 上一篇    下一篇

基于深度学习的鱼类特征点检测与体征识别方法

崔海朋,秦朝旭,马志宇   

  1. (青岛杰瑞工控技术有限公司,青岛市,266520)
  • 出版日期:2024-06-15 发布日期:2024-06-08
  • 基金资助:
    山东省重点研发计划(科技示范工程)(2021SFGC0701)

Fish key feature point detection and sign identification based on deep learning

Cui Haipeng, Qin Chaoxu, Ma Zhiyu   

  1. (Qingdao JARI Industrial Control Technology Co., Ltd., Qingdao, 266520, China)
  • Online:2024-06-15 Published:2024-06-08

摘要:

为确保鱼类养殖过程中生长状况实时监控及科学化养殖管理,需要实现高效化、自动化的鱼类体征识别。基于此,提出基于深度学习的关键特征点检测模型结合双目视觉的鱼类体征识别方法。基于预处理后的单目视觉数据集对融入金字塔分割注意力的高分辨率网络模型展开训练,获得鱼类关键特征点检测模型,在此基础上能够对双目视觉图像中各特征点进行快速检测识别与匹配,从而根据双目视觉系统内部参数计算各特征点真实坐标并计算获得对应体征参数。试验结果表明,建立的关键特征点检测模型对各特征点PCK值均大于0.85,识别得到的体征参数相对误差均小于10%,能够为鱼类体征快速准确识别提供支撑,有效助力鱼类养殖科学化、智能化发展。

关键词: 鱼类, 水产养殖, 深度学习, 关键点检测, 体征识别

Abstract:

In order to ensure realtime monitoring of growth conditions and scientific breeding management in the process of fish farming, it is necessary to realize efficient and automatic fish sign recognition. Based on this, a fish sign recognition method based on deep learning key feature point detection model combined with binocular vision is proposed. Based on the preprocessed monocular vision data set, the highresolution network model integrated into the pyramid segmentation attention is trained to obtain the fish key feature point detection model. On this basis, the binocular vision image can be rapidly detected, recognized and matched with each feature point, and the real coordinates of each feature point and corresponding physical parameters can be calculated according to the internal parameters of the binocular vision system The test results show that the PCK value of the established key feature point detection model for each feature point is greater than 0.85, and the relative error of the identified sign parameters is less than 10%, which can provide support for the rapid identification of fish signs and effectively help the scientific and intelligent development of fish farming.

Key words: fish, aquaculture, deep learning, key point detection, signs identification

中图分类号: