[1] Midtiby H S, Pastucha E. Pumpkin yield estimation using images from a UAV [J]. Agronomy, 2022, 12(4): 964.
[2] Zou K, Chen X, Zhang F, et al. A field weed density evaluation method based on UAV imaging and modified UNet [J]. Remote Sensing, 2021, 13(2): 310.
[3] 朱启兵, 张梦, 刘振方, 等. 基于点云配准的盆栽金桔果实识别与计数方法 [J]. 农业机械学报, 2022, 53(5): 209-216.Zhu Qibing, Zhang Meng, Liu Zhenfang, et al. Identification and counting method of potted kumquat fruits based on point cloud registration [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 209-216.
[4] He L, Fang W, Zhao G, et al. Fruit yield prediction and estimation in orchards: A stateoftheart comprehensive review for both direct and indirect methods [J]. Computers and Electronics in Agriculture, 2022, 195: 106812.
[5] 官大文, 王春源, 王骏发. 基于无人机机器视觉的西瓜侦测创新农场管理模式[J]. 海峡科学, 2020(11): 62-68.〖JP2〗Guan Dawen, Wang Chunyuan, Wang Junfa. Watermelon detection and innovative farm management mode based on UAV machine vision [J].〖JP〗 Straits Science, 2020(11): 62-68.
[6] Ekiz A, Arca S, Bozdogan A M. Classification and segmentation of watermelon in images obtained by unmanned aerial vehicle [C]. 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), 2019: 619-622.
[7] Li Q, Jia W, Sun M, et al. A novel green apple segmentation algorithm based on ensemble UNet under complex orchard environment [J]. Computers and Electronics in Agriculture, 2021, 180: 105900.
[8] Zhao T, Wang Z, Yang Q, et al. Melon yield prediction using small unmanned aerial vehicles [C]. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping Ⅱ. SPIE, 2017, 10218: 53-58.
[9] Kalantar A, Edan Y, Gur A, et al. A deep learning system for single and overall weight estimation of melons using unmanned aerial vehicle images [J]. Computers and Electronics in Agriculture, 2020, 178: 105748.
[10] 薛君蕊, 王昱潭, 曲爱丽, 等. 基于改进FCN-8s的灵武长枣图像分割方法[J]. 农业工程学报, 2021, 37(5): 191-197.
Xue Junrui, Wang Yutan, Qu Aili, et al. Image segmentation method for Lingwu long jujubes based on improved FCN-8s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 191-197.
[11] Qian C, Liu H, Du T, et al. An improved UNet networkbased quantitative analysis of melon fruit phenotypic characteristics [J]. Journal of Food Measurement and Characterization, 2022, 16(5): 4198-4207.
[12] Ronneberger O, Fischer P, Brox T. UNet: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention, Springer, Cham, 2015: 234-241.
[13] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[14] Wang Q, Wu B, Zhu P, et al. ECANet: Efficient channel attention for deep convolutional neural networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[15] Li R, Zheng S, Duan C, et al. Multistage attention ResUNet for semantic segmentation of fineresolution remote sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[16] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]. Advances in Neural Information Processing Systems, 2017, 30.
[17] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[18] 黄林林, 李世雄, 谭彧, 等. 基于改进卷积神经网络算法的路径导航研究[J]. 中国农机化学报, 2022, 43(4): 146-152,159.
Huang Linlin, Li Shixiong, Tan Yu, et al. Research on farmland route navigation based on an improved convolutional neural network algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 146-152, 159.
[19] 王涛. 基于光谱技术的土壤理化信息检测方法研究[D]. 杭州: 浙江大学, 2020.Wang Tao. Study on soil physical and chemical information detection methods based on spectral technology [D]. Hangzhou: Zhejiang University, 2020.
[20] 王翔宇, 李海生, 吕丽君, 等. 基于Unet和可见光谱图像的黄瓜褐斑病分割[J]. 光谱学与光谱分析, 2021, 41(5): 1499-1504.Wang Xiangyu, Li Haisheng, Lü Lijun, et al. Segmentation of cucumber target leaf spot based on UNet and visible spectral images [J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1499-1504.
[21] Rakhlin A, Shamir O, Sridharan K. Making gradient descent optimal for strongly convex stochastic optimization [J].arXiv Preprint arXiv: 1109.5647, 2012.
|