[1] Kong Jianlei, Yang Chengcai, Wang Jianli, et al. Deepstacking network approach by multisource data mining for hazardous risk identification in IoTbased intelligent food management systems [J]. Computational Intelligence and Neuroscience, 2021.
[2] 熊征, 李惠玲, 侯露, 等. 面向机器人采摘的樱桃番茄力学特性研究[J]. 现代农业装备, 2020, 41(3): 24-28.
Xiong Zheng, Li Huiling, Hou Lu, et al. Mechanical properties of cherry tomato for harvesting robot [J]. Modern Agricultural Equipment, 2020, 41(3): 24-28.
[3] Ruder S. An overview of gradient descent optimization algorithms [J]. arXiv 2016, arXiv: 1609.04747.
[4] Jin X, Zheng W, Kong J, et al. Deeplearning forecasting method for electric power load via attentionbased encoderdecoder with bayesian optimization [J]. Energies, 2021, 14(6): 1596.
[5] Jin X, Zheng W, Kong J, et al. Deeplearning temporal predictor via bidirectional selfattentive encoderdecoder framework for IOTbased environmental sensing in intelligent greenhouse [J]. Agriculture, 2021, 11: 802.
[6] Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks [J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24.
[7] Baltazar A R, Santos F N d, Moreira A P, et al. Smarter robotic sprayer system for precision agriculture [J]. Electronics, 2021, 10(17): 2061.
[8] Hulens D, Van Ranst W, Cao Y, et al. Autonomous visual navigation for a flower pollination drone [J]. Machines, 2022, 10(5): 364.
[9] RodríguezOrtega W M, Martínez V, Nieves M, et al. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions [J]. Scientific Reports, 2019, 9(1): 6733.
[10] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
[11] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[12] Girshick R. Fast RCNN [C]. In Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[13] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[14] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[15] 宋佳瑞. 基于视觉的空战目标检测跟踪与定位方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
Song Jiarui. Visionbased air combat target detection tracking and localization methodology research [D]. Harbin: Harbin Institute of Technology, 2022
[16] Kong J, Wang H, Jin X, et al. Multistream hybrid architecture based on crosslevel fusion strategy for finegrained crop species recognition in precision agriculture [J]. Computers and Electronics in Agriculture, 2021, 185(1): 106134.
[17] Zheng Y, Kong J, Jin X, et al. Crop deep: The crop vision dataset for deeplearningbased classification and detection in precision agriculture [J]. Sensors, 2019, 19: 1058.
[18] Zheng Y, Kong J, Jin X, et al. Probability fusion decision framework of multiple deep neural networks for finegrained visual classification [J]. IEEE Access, 2019, 7: 122740-22757.
[19] Chen H C, Widodo A M, Wisnujati A, et al. AlexNet convolutional neural network for disease detection and classification of tomato leaf [J]. Electronics, 2022, 11: 951.
[20] Bhujel A, Kim N E, Arulmozhi E, et al. A lightweight attentionbased convolutional neural networks for tomato leaf disease classification [J]. Agriculture, 2022, 12: 228.
[21] Ge Y, Lin S, Zhang Y, et al. Tracking and counting of tomato at different growth period using an improving YOLOdeepsort network for inspection robot [J]. Machines, 2022, 10: 489.
[22] Kuznetsova A, Maleva T, Soloviev V. Using YOLOv3 algorithm with preand postprocessing for apple detection in fruitharvesting robot [J]. Agronomy, 2020, 10: 1016.
[23] Ji W, Pan Y, Xu B, et al. A realtime apple targets detection method for picking robot based on ShufflenetV2YOLOX [J]. Agriculture, 2022, 12: 856.
[24] Wang F, Sun Z, Chen Y, et al. Xiaomila green pepper target detection method under complex environment based on improved YOLOv5s [J]. Agronomy, 2022, 12: 1477.
[25] Su F, Zhao Y, Wang G, et al. Tomato maturity classification based on SEYOLOv3MobileNetV1 network under nature greenhouse environment [J]. Agronomy, 2022, 12: 1638.
[26] Andriyanov N, Khasanshin I, Utkin D, et al. Intelligent system for estimation of the spatial position of apples based on YOLOv3 and Real Sense Depth Camera D415 [J]. Symmetry, 2022, 14: 148.
[27] Pan S, Ahamed T. Pear recognition in an orchard from 3D Stereo camera datasets to develop a fruit picking mechanism using mask RCNN [J]. Sensors, 2022, 22: 4187.
[28] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[29] Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv 2018, arXiv: 1804.02767.
[30] Bochkovskiy A, Wang C, Liao H. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv 2020, arXiv: 2004.10934.
[31] Xia X, Chai X, Zhang N, et al. Culling double counting in sequence images for fruit yield estimation [J]. Agronomy, 2022, 12: 440.
[32] Yang B, Gao Z, Gao Y, et al. Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module [J]. Agronomy, 2021, 11: 1202.
[33] Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking [C]. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), 2016: 3464-3468.
[34] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric [C]. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), 2017: 3645-3649.
[35] Buslaev A, Parinov A, Khvedchenya E, et al. Albumentations: Fast and flexible image augmentations [J]. Information, 2020, 11(2): 125.
[36] Yun S, Han D, Oh S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features [C]. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6023-6032.
[37] Ma N, Zhang X, Zheng H, et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design [C]. In Proceedings of the European Conference on Computer Vision (ECCV), 2018.
[38] Tan M, Pang R, Le Q. EfficientDet: Scalable and efficient object detection [C]. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[39] 宋传旗. YOLOv5算法的人脸识别检测方法研究[J]. 计算机时代, 2023(7): 15-19.
Song Chuanqi. Research on face recognition detection method of YOLOv5 algorithm [J]. Computer Era, 2023(7): 15-19
[40] Wang C, Liao H, Wu Y, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020: 1571-1580.
[41] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[42] Zhang X, Zhou X, Lin M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices [J]. arXiv 2017, arXiv: 1707.01083v2.
[43] Lin T, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[44] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[45] Kalman R E. A new approach to linear filtering and prediction problems [J]. Journal of Fluids Engineering, 1960, 82: 35-45.
[46] De Maesschalck R, Delphine J R, Massart D L. The mahalanobis distance [J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 1-18.
[47] Wright M B. Speeding up the Hungarian algorithm [J]. Computers & Operations Research, 1990, 17(1): 95-96.
[48] 龙洁花, 赵春江, 林森, 等. 改进Mask RCNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108.
Long Jiehua, Zhao Chunjiang, Lin Sen, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask RCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 100-108.
[49] 刘小龙, 王国强, 刘娜, 等. 设施农业机械发展现状及趋势分析[J]. 农业技术与装备, 2022(3): 61-62.
Liu Xiaolong, Wang Guoqiang, Liu Na, et al. Development status and trend analysis of facility agricultural machinery [J]. Agricultural Technology & Equipment, 2022(3): 61-62.
[50] 赵子文, 金永, 陈友兴, 等. 基于改进YOLVOv5s的X射线图像粘接缺陷实时检测[J]. 国外电子测量技术, 2023, 42(4): 181-186.
Zhao Ziwen, Jin Yong, Chen Youxing, et al. Realtime detection of adhesive defects in Xray images based on improved YOLVOv5s [J]. Foreign Electronic Measurement Technology, 2023, 42(4): 181-186.
|