[1] 孙爱华, 张礼杰, 李虎, 等. 不同水分处理的三峡库区柑橘品质综合评价[J]. 节水灌溉, 2022(12): 24-30.
Sun Aihua, Zhang Lijie, Li Hu, et al. A comprehensive evaluation of citrus quality in the Three Gorges Reservoir Area under different water treatments [J]. Water Saving Irrigation, 2022(12): 24-30.
[2] 边柯橙, 杨海军, 路永华. 深度学习在农业病虫害检测识别中的应用综述[J]. 软件导刊, 2021, 20(3): 26-33.
Bian Kecheng, Yang Haijun, Lu Yonghua. Application review of deep learning in detection and identification of agricultural pests and diseases [J]. Software Guide, 2021, 20(3): 26-33.
[3] Wu Y L, Chen Y Y, Lian X Q, et al. Study on the identification method of citrus leaves based on hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3837-43.
[4] Wang K J, Guo D M, Zhang Y, et al. Detection of Huanglongbing (citrus greening) based on hyperspectral image analysis and PCR [J]. Frontiers of Agricultural Science and Engineering, 2019, 6(2): 172-180.
[5] Pydipati R, Burks T F, Lee W S. Identification of citrus disease using color texture features and discriminant analysis [J]. Computers and Electronics in Agriculture, 2006, 52(1-2): 49-59.
[6] 杜英杰, 宗哲英, 王祯, 等. 农作物病害诊断方法现状和展望[J]. 江苏农业科学, 2023, 51(6): 16-23.
Du Yingjie, Zong Zheying, Wang Zhen, et al. Current situation and prospect of diagnostic methods for crop diseases [J]. Jiangsu Agricultural Sciences, 2023, 51(6): 16-23.
[7] 李亚文, 张军, 陈月星. 基于Kmeans和特征提取的植物叶部病害检测与实现[J]. 陕西农业科学, 2021, 67(6): 33-37, 41.
Li Yawen, Zhang Jun, Chen Yuexing. Detection of plant leaf diseases based on Kmeans and feature extraction [J]. Shaanxi Journal of Agricultural Sciences, 2021, 67(6): 33-37, 41.
[8] 孙瑜, 张永梅, 武玉军. 基于粒子群算法和支持向量机的黄花菜叶部病害识别[J]. 中国农学通报, 2022, 38(8): 135-140.
Sun Yu, Zhang Yongmei, Wu Yujun. Recognition of hemerocallis citrina leaf disease based on PSO and SVM [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140.
[9] 孙俊, 朱伟栋, 罗元秋, 等. 基于改进MobileNetV2的田间农作物叶片病害识别[J]. 农业工程学报, 2021, 37(22): 161-169.
Sun Jun, Zhu Weidong, Luo Yuanqiu, et al. Recognizing the diseases of crop leaves in fields using improved MobilenetV2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 161-169.
[10] 刘拥民, 胡魁, 聂佳伟, 等. 基于MSDBResNet的水稻病虫害识别[J/OL]. 华南农业大学学报: 1-11[2023-08-25]. http://kns.cnki.net/kcms/detail/44.1110.S.20230707.1325.004.html.
Liu Yongmin, Hu Kui, Nie Jiawei, et al. Rice pest identification based on MSDBResNet [J/OL]. Journal of South China Agricultural University: 1-11[2023-08-25]. http://kns.cnki.net/kcms/detail/44.1110.S.20230707.1325.004.html.
[11] 杜海顺, 张春海, 安文昊, 等. 基于多层信息融合和显著性特征增强的农作物病害识别[J]. 农业机械学报, 2023, 54(7): 214-222.
Du Haishun, Zhang Chunhai, An Wenhao, et al. Crop disease recognition based on multilayer information fusion and saliency feature enhancement [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 214-222.
[12] Wang B. Identification of crop diseases and insect pests based on deep learning [J]. Scientific Programming, 2022.
[13] Mallick M T, Biswas S, Das A K, et al. Deep learning based automated disease detection and pest classification in Indian mung bean [J]. Multimedia Tools and Applications, 2023, 82(8): 12017-41.
[14] Xiao Z T, Yin K, Geng L, et al. Pest identification via hyperspectral image and deep learning [J]. Signal Image and Video Processing, 2022, 16(4): 873-80.
[15] Liu Y W, Zhang X, Gao Y X, et al. Improved CNN method for crop pest identification based on transfer learning [J]. Computational Intelligence and Neuroscience, 2022.
[16] Liu Z, Hu H, Lin Y T, et al. Swin Transformer V2: Scaling up capacity and resolution [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 11999-12009.
[17] Liu Z, Lin Y, Cao Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows [C]. Proceedings of the IEEE International Conference on Computer Vision. IEEE Press, 2021: 10012-10022
[18] Chen L C, Papandreou G, Kokkinosi I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[19] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. https://arxiv.org/abs/1706.05587v3, 2022-05-09.
[20] 钱坤, 李晨瑄, 陈美杉, 等. 基于改进Swin Transformer的舰船目标实例分割算法[J/OL]. 系统工程与电子技术: 1-12[2023-09-04]. http://kns.cnki.net/kcms/detail/11.2422.TN.20220625.1335.012.html.
Qian Kun, Li Chenxuan, Chen Meishan, et al. A ship target instance segmentation algorithm based on improved Swin Transformer [J/OL]. Systems Engineering and Electronics: 1-12[2023-09-04]. http://kns.cnki.net/kcms/detail/11.2422.TN.20220625.1335.012.html.
[21] Wang Q L, Wu B G, Zhu P F, et al. ECANet: Efficient channel attention for deep convolutional neural networks [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11531-11539.
[22] He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 558-567.
[23] Kim Y. Convolutional neural networks for sentence classification [J]. Eprint Arxiv, 2014.
[24] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv: 1409.1556.2014(9).
[26] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [C]. 9th International Conference on Learning Representations, 2021: 1-22.
|