[1] 吕亚荣, 周诚. 论农业是国民经济的基础[J]. 学理论, 2009(17): 64-67.
[2] 本刊综合报道. 小小圣女果红火振兴路[J]. 农村新技术, 2022(4): 60-61.
[3] 王柯, 付怡然, 彭向阳, 等. 无人机低空遥感技术进展及典型行业应用综述[J]. 测绘通报, 2017(S1): 79-83.
Wang Ke, Fu Yiran, Peng Xiangyang, et al. Overview of UAV low altitude remote sensing technology and application in typical industries [J]. Bulletin of Surveying and Mapping, 2017(S1): 79-83.
[4] 黄山, 吴振升, 任志刚, 等. 电力智能巡检机器人研究综述[J]. 电测与仪表, 2020, 57(2): 26-38.
Huang Shan, Wu Zhensheng, Ren Zhigang, et al. Review of electric power intelligent inspection robot [J]. Electrical Measurement and Instrumentation, 2020, 57(2): 26-38.
[5] 杨剑超, 姜学玲, 王德涛, 等. 农业物联网巡检系统在设施温棚的应用与效益分析[J]. 农业工程技术, 2017, 37(24): 55-57.
[6] 张世昂, 付根平. 农业智能巡检小车的设计[J]. 中国农机化学报, 2018, 39(4): 82-89.
Zhang Shiang, Fu Genping. Design of intelligent routing inspection car for agriculture [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(4): 82-89.
[7] 赵杰文, 刘木华, 杨国彬. 基于HIS颜色特征的田间成熟番茄识别技术[J]. 农业机械学报, 2004(5): 122-124.
Zhao Jiewen, Liu Muhua, Yang Guobin. Discrimination of mature tomato based on HIS color space in natural outdoor scenes [J]. Transactions of the Chinese Society for Agricultural Machinery, 2004(5): 122-124.
[8] 蒋焕煜, 彭永石, 申川, 等. 基于双目立体视觉技术的成熟番茄识别与定位[J]. 农业工程学报, 2008(8): 279-283.
Jiang Huanyu, Peng Yongshi, Shen Chuan, et al. Recognizing and locating ripe tomatoes based on binocular stereovision technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(8): 279-283.
[9] 陶彦辉, 尹君驰, 方菲. 基于RGB颜色模型的番茄识别系统设计[J]. 机械研究与应用, 2015, 28(1): 159-160.
Tao Yanhui, Yin Junchi, Fang Fei. Design of tomato identification system based on RGB color model [J]. Mechanical Research & Application, 2015, 28(1): 159-160.
[10] 周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68.
Zhou Huiru, Wu Boming. Advances in research on deep learning for crop disease lmage recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68.
[11] 李小敏, 张日红, 陈天赐, 等. 基于深度学习的林下落果识别方法与试验[J]. 中国农机化学报, 2021, 42(9): 202-208.
Li Xiaomin, Zhang Rihong, Chen Tianci, et al. Identification method and experiment of fallen fruit based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 202-208.
[12] 傅隆生, 冯亚利, Tola Elkamil, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
Fu Longsheng, Feng Yali, Tola Elkamil, et al. lmage recognition method of multicluster kiwifruit in field based on convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211.
[13] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[14] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(6): 229-237.
[15] 苏斐, 张泽旭, 赵妍平, 等. 基于轻量化YOLO-v3的绿熟期番茄检测方法[J]. 中国农机化学报, 2022, 43(3): 132-137.
Su Fei, Zhang Zexu, Zhao Yanping, et al. Detection of mature green tomato based on lightweight YOLO-v3 [J].Journal of Chinese Agricultural Mechanization, 2022, 43(3): 132-137.
[16] 张伏, 陈自均, 鲍若飞, 等. 基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别[J]. 农业工程学报, 2021, 37(16): 270-278.
Zhang Fu, Chen Zijun, Bao Ruofei, et al. Recognition of dense cherry tomatoes based on improved YOLOv4-LITE lightweight neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 270-278.
[17] 王树文, 闫成新, 张天序, 等. 数学形态学在图像处理中的应用[J]. 计算机工程与应用, 2004(32): 89-92.
Wang Shuwen, Yan Chengxin, Zhang Tianxu, et al. Application of mathematical morphology in image processing [J]. Computer Engineering and Applications, 2004(32): 89-92.
[18] 周晓彦, 王珂, 李凌燕. 基于深度学习的目标检测算法综述[J]. 电子测量技术, 2017, 40(11): 89-93.
Zhou Xiaoyan, Wang Ke, Li Lingyan. Review of object detection based on deep learning [J]. Electronic Measurement Technology, 2017, 40(11): 89-93.
[19] Li Xu, Pan Jiandong, Xie Fangping, et al. Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model [J]. Computers and Electronics in Agriculture, 2021,191: 106503.
[20] Guo Menghao, Xu Tianxing, Liu Jiangjiang, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022, 8(3): 331-368.
(上接第243页)
[17] 邵超, 赵帅, 赵有信, 等. 太阳能光伏直流蓄冷冷库温度场模拟和实验研究[J]. 现代信息科技, 2020, 4(7): 29-32.
Shao Chao, Zhao Shuai, Zhao Youxin, et al. Simulation and experimental study on temperature field of solar photovoltaic DC cold storage [J]. Modern Information Technology, 2020, 4(7): 29-32.
[18] 孙锦涛, 游辉, 谢晶. 蓄冷板对冷库保温的影响实验[J]. 包装工程, 2022, 43(13): 107-116.
Sun Jintao, You Hui, Xie Jing. Experimental research on influence of cold storage plate on insulation of cold storage [J]. Packaging Engineering, 2022, 43(13): 107-116.
[19] 李振华, 李征涛, 王芳, 等. 冷库热气融霜与电热融霜的对比分析[J]. 制冷与空调(四川), 2011, 25(6): 577-579.
Li Zhenhua, Li Zhengtao, Wang Fang, et al. The comparative analysis of hot gas defrost and electricity defrost in cold storage [J].Refrigeration and Air Conditioning, 2011, 25(6): 577-579.
[20] 赵松松, 杨昭, 陈爱强, 等. 微型冷库复合加热循环除霜系统的研制与试验[J]. 农业工程学报, 2015, 31(2): 306-311.
Zhao Songsong, Yang Zhao, Chen Aiqiang, et al. Development and experiment about recombination heating circulation defrosting system of mini cold storage house [J].Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 306-311.
|