[1] 万方浩, 侯有明, 蒋明星. 入侵生物学[M]. 北京: 科学出版社, 2015.
[2] 闫小玲, 寿海洋, 马金双. 中国外来入侵植物研究现状及存在的问题[J]. 植物分类与资源学报, 2012, 34(3): 287-313.
Yan Xiaoling, Shou Haiyang, Ma Jinshuang. The problem and status of the alien invasive plants in China [J]. Plant Diversity and Resources, 2012, 34(3): 287-313.
[3] 赵玉信, 杨惠敏. 作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制[J]. 草业学报, 2015, 24(8): 199-210.
Zhao Yuxin, Yang Huimin. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms [J]. Acta Prataculturae Sinica, 2015, 24(8): 199-210.
[4] 李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84.
Li Xiangju. Main problems and management strategies of weeds in agricultural fields in China in recent years [J]. Plant Protection, 2018, 44(5): 77-84.
[5] 孙金秋, 任相亮, 胡红岩, 等. 农田杂草群落演替的影响因素综述[J]. 杂草学报, 2019, 37(2): 1-9.
Sun Jinqiu, Ren Xiangliang, Hu Hongyan, et al. The factors influencing weed community succession in the crop field [J]. Journal of Weed Science, 2019, 37(2): 1-9.
[6] 吕沐华, 丁珠玉. 基于机器视觉的果园喷药除草机器人视觉系统设计[J]. 中国农机化学报, 2021, 42(5): 42-48.
Lü Muhua, Ding Zhuyu. Design of visual systems for orchard spraying weeding robot based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(5): 42-48.
[7] 傅雷扬, 李绍稳, 张乐, 等. 田间除草机器人研究进展综述[J]. 机器人, 2021, 43(6): 751-768.
Fu Leiyang, Li Shaowen, Zhang Le, et al. Research progress on field weeding robots: A review [J]. Robot, 2021, 43(6): 751-768.
[8] 兰天, 李端玲, 张忠海, 等. 智能农业除草机器人研究现状与趋势分析[J]. 计算机测量与控制, 2021, 29(5): 1-7.
Lan Tian, Li Duanling, Zhang Zhonghai, et al. Analysis on research status and trend of intelligent agricultural weeding robot [J]. Computer Measurement & Control, 2021, 29(5): 1-7.
[9] Aichen W, Wen Z, Xinhua W. A review on weed detection using groundbased machine vision and image processing techniques [J]. Computers and Electronics in Agriculture, 2019, 158: 226-240.
[10] Aitkenhead M J, Dalgetty I A, Mullins C E, et al. Weed and crop discrimination using image analysis and artificial intelligence methods [J]. Computers and Electronics in Agriculture, 2003, 39(3): 157-171.
[11] 毛文华, 曹晶晶, 姜红花, 等. 基于多特征的田间杂草识别方法[J]. 农业工程学报, 2007, 122(11): 206-209.
Mao Wenhua, Cao Jingjing, Jiang Honghua, et al. Infield weed detection method based on multifeatures [J]. Transactions of the CSAE, 2007, 23(11): 206-209.
[12] 毛罕平, 胡波, 张艳诚, 等. 杂草识别中颜色特征和阈值分割算法的优化[J]. 农业工程学报, 2007, 23(9): 154-158.
Mao Hanping, Hu Bo, Zhang Yancheng, et al. Optimization of color index and threshold segmentation in weed recognition [J]. Transactions of the CSAE, 2007, 23(9): 154-158.
[13] 赵川源, 何东健, 乔永亮. 基于多光谱图像和数据挖掘的多特征杂草识别方法[J]. 农业工程学报, 2013, 29(2): 192-198.
Zhao Chuanyuan, He Dongjian, Qiao Yongliang. Identification method of multifeature weed based on multispectral images and data mining [J]. Transactions of the CSAE, 2013, 29(2): 192-198.
[14] Granitto P M, Verdes P F, Ceccatto H A. Largescale investigation of weed seed identification by machine vision [J]. Computers and Electronics in Agriculture, 2005, 47(1): 15-24.
[15] Alchanatis V, Ridel L, Hetzroni A, et al. Weed detection in multispectral images of cotton fields [J]. Computers and Electronics in Agriculture, 2005, 47(3): 243-260.
[16] Piron A, Leemans V, Lebeau F, et al. Improving inrow weed detection in multispectral stereoscopic images [J]. Computers and Electronics in Agriculture, 2009, 69(1): 73-79.
[17] Torressospedra J, Nebot P. Twostage procedure based on smoothed ensembles of neural networks applied to weed detection in orange groves [J]. Biosystems Engineering, 2014, 123: 40-55.
[18] PérezOrtiz M, Pea J M, Gutiérrez P A, et al. A semisupervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method [J]. Applied Soft Computing, 2015, 37: 533-544.
[19] Bakhshipour A, Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features [J]. Computers and Electronics in Agriculture, 2018, 145: 153-160.
[20] Lecun Y, Bengio Y, Hinton G E. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[21] Shaoqing R, Kaiming H, Ross G, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[22] Wei L, Dragomir A, Dumitru E, et al. SSD: Single shot multibox detector [C]. Springer International Publishing, 2016: 21-37.
[23] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
[24] Hasan A S M, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184.
[25] Alessandro D S F, Matte Freitas D, Gercina G D S, et al. Weed detection in soybean crops using ConvNets [J]. Computers and Electronics in Agriculture, 2017, 143: 314-324.
[26] Yu J, Sharpe S M, Schumann A W, et al. Deep learning for imagebased weed detection in turf grass [J]. European Journal of Agronomy, 2019, 104: 78-84.
[27] 樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage under natural conditions [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[28] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[29] 薛金利, 戴建国, 赵庆展, 等. 基于低空无人机影像和YOLOv3实现棉田杂草检测[J]. 石河子大学学报(自然科学版), 2019, 37(1): 21-27.
Xue Jinli, Dai Jianguo, Zhao Qingzhan, et al. Cotton field weed detection based on lowaltitude drone image and YOLOv3 [J]. Journal of Shihezi University(Natural Science), 2019, 37(1): 21-27.
[30] 中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1985.
[31] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[32] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[33] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020: 390-391.
[34] Lin T Y, Pollr P, Girshick R, et al. Feature pyramid networks for object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
[35] Shu L, Lu Q, Haifang Q, et al. Path aggregation network for instance segmentation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[36] Zheng Z, Wang P, Liu W, et al. DistanceIoU loss: Faster and better learning for bounding box regression [C]. Proceedings of the AAAI conference on artificial intelligence. 2020, 34(7): 12993-13000.
(上接第193页)
[18] Zhang Jinjing, Hu Fei, Li Li, et al. An adaptive mechanism to achieve learning rate dynamically [J]. Neural Computing and Applications, 2019, 31(10): 6685-6698.
[19] 徐艳蕾, 何润, 翟钰婷. 基于轻量卷积网络的田间自然环境杂草识别方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2304-2312.
Xu Yanlei, He Run, Zhai Yuting.Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2304-2312.
[20] 毕常遥, 袁晓彤. 基于Adam局部优化的分布式近似牛顿深度学习模型训练[J]. 计算机应用与软件, 2021, 38(10): 278-283.
Bi Changyao, Yuan Xiaotong.Deep learning training via distributed approximate newtontype method based on Adam local optimization [J]. Computer Applications and Software, 2021, 38(10): 278-283.
[21] 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129.
Wang Linbai, Zhang Bo, Yao Jingfa, et al.Potato leaf disease recognition and potato leaf disease spot detection based on Convolutional Neural Network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129.
[22] Wang Guowei, Yu Haiye, Sui Yuanyuan. Research on maize disease recognition method based on improved ResNet50 [J]. Mobile Information Systems, 2021.
[23] Methuni N R, Yasmini R, Begumi N, et al. Carrot disease recognition using deep learning approach for sustainable agriculture [J]. International Journal of Advanced Computer Science and Applications (IJACSA), 2021, 12(9).
[24] 梁子超, 李智炜, 赖铿. 10折交叉验证用于预测模型泛化能力评价及其R软件实现[J]. 中国医院统计, 2020, 27(4): 289-292.
Liang Zichao, Li Zhiwei, Lai Keng.Application of 10-fold crossvalidation in the evaluation of generalization ability of prediction models and the realization in R [J]. Chinese Journal of Hospital Statistics, 2020, 27(4): 289-292.
|