[1]
胡祚忠. 茧丝检验[M]. 北京: 中国农业科学技术出版社, 2015.
[2]
边柯橙, 杨海军, 路永华. 深度学习在农业病虫害检测识别中的应用综述[J]. 软件导刊, 2021, 20(3): 26-33.
Bian Kecheng, Yang Haijun, Lu Yonghua. Application review of deep learning in detection and identification of agricultural pests and diseases [J]. Software Guide, 2021, 20(3): 26-33.
[3]
甘勇. 蚕茧质量无损检测方法研究[J]. 丝绸, 2004(5): 19-21.
Gan Yong. Research on nondestructive test of cocoon quality [J]. Silk Monthly, 2004(5): 19-21.
[4]
梁军圣. 基于机器视觉的蚕茧外观检测系统算法研究[D]. 柳州: 广西科技大学, 2014.
Liang Junsheng. The detection algorithm research of cocoon appearance based on machine vision [D]. Liuzhou: Guangxi University of Science and Technology, 2014.
[5]
王超. 基于机器视觉的蚕茧图像识别研究[D]. 柳州: 广西科技大学, 2019.
Wang Chao. Research on cocoon image recognition based on machine vision [D]. Liuzhou: Guangxi University of
Science and Technology, 2019.
[6]
Jia S, Ping W, Jia P, et al. Research on data augmentation for image classification based on convolution neural networks [C]. 2017 Chinese Automation Congress (CAC). IEEE, 2017.
[7]
Hu B, Gao B, Woo W L, et al. A lightweight spatial and temporal multifeature fusion network for defect detection [J]. IEEE Transactions on Image Processing, 2021, 30: 472-486.
[8]
Yuan C, Sun X, Rui L. Fingerprint liveness detection based on multiscale LPQ and PCA [J]. China Communications, 2016, 13(7): 60-65.
[9]
Uddin M P, Mamun M A, Afjal M I, et al. Informationtheoretic feature selection with segmentationbased folded principal component analysis (PCA) for hyperspectral image classification [J]. International Journal of Remote Sensing, 2021, 42: 286-321.
[10]
李小占, 马本学, 喻国威, 等. 基于深度学习与图像处理的哈密瓜表面缺陷检测[J]. 农业工程学报, 2021, 37(1): 223-232.
Li Xiaozhan, Ma Benxue, Yu Guowei, et al. Surface defect detection of Hami melon using deep learning and image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 223-232.
[11]
王红雨, 尹午荣, 汪梁, 等. 基于HSV颜色空间的快速边缘提取算法[J]. 上海交通大学学报, 2019, 53(7): 765-772.
Wang Hongyu. Yin Wurong, Wang Liang, et al. Fast edge extraction algorithm based on HSV color space [J]. Journal of Shanghai Jiaotong University, 2019, 53(7): 765-772.
[12]
Liu Shouxin, Long Wei, He Lei, et al. Retinexbased fast algorithm for lowlight image enhancement [J]. Entropy, 2021, 23(6): 746.
[13]
Bargshady G, Zhou Xujuan, Deo R C, et al. The modeling of human facial pain intensity based on Temporal Convolutional Networks trained with video frames in HSV color space [J]. Applied Soft Computing, 2020, 97: 106805.
[14]
Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain [J]. Psychological Review, 1958, 65: 386-408.
[15]
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[16]
Fang Lingling, Wang Xin. COVID-19 deep classification network based on convolution and deconvolution local enhancement [J]. Computers in Biology and Medicine, 2021, 135: 104588
|