中国农机化学报 ›› 2023, Vol. 44 ›› Issue (5): 89-99.DOI: 10.13733/j.jcam.issn.2095-5553.2023.05.012
杨承磊1, 2,兰玉彬1, 2,王庆雨1, 2,别晓婷1, 2,单常峰1, 2,王国宾1, 2
出版日期:
2023-05-15
发布日期:
2023-06-02
基金资助:
Yang Chenglei1, 2, Lan Yubin1, 2, Wang Qingyu1, 2, Bie Xiaoting1, 2, Shan Changfeng1, 2, Wang Guobin1, 2
Online:
2023-05-15
Published:
2023-06-02
摘要: 近年来,随着以日光温室为主要形式的设施栽培技术的兴起以及神经网络在语音识别、计算机视觉、序列分类领域取得重大突破,作为一种实现时间序列预测的有效工具,越来越多的神经网络技术开始应用在温室小气候预测技术中。按照神经网络的发展顺序对不同类型的神经网络模型在温室小气候预测中的应用进行总结叙述,分别针对前馈神经网络、循环神经网络、深度神经网络及混合神经网络的发展现状和研究者对网络模型的优化情况进行详细的介绍。在此基础上,分析当前针对温室小气候预测的神经网络模型存在模型输入参数单一而无法考虑温室整体环境变化、模型结构单一导致鲁棒性不足以及模型可靠性检验方法不合适、深度模型难以实地部署的问题,提出建立混合模型、改进模型检验方式、优化深度模型网络结构等建议。以期为面向温室智能控制的进一步研究提供参考。
中图分类号:
杨承磊, 兰玉彬, 王庆雨, 别晓婷, 单常峰, 王国宾, . 神经网络在温室小气候预测中的应用[J]. 中国农机化学报, 2023, 44(5): 89-99.
Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99.
[1] Iga J L. Modeling of the climate for a greenhouse in the NorthEast of México[J]. IFAC Proceedings Volumes, 2008, 41(2): 9558-9563. [2] De Gelder A, Dieleman J A, Bot G P A, et al. An overview of climate and crop yield in closed greenhouses [J]. The Journal of Horticultural Science and Biotechnology, 2012, 87(3): 193-202. [3] Frausto H U, Pieters J G. Modelling greenhouse temperature using system identification by means of neural networks [J]. Neurocomputing, 2004, 56: 423-428. [4] 蒋勇翔, 秦琳琳, 石春, 等. 基于机理模型的现代温室湿度系统建模[J]. 江南大学学报(自然科学版), 2013, 12(5): 535-540. Jiang Yongxiang, Qin Linlin, Shi Chun, et al. Modern greenhouse humidity system modeling based on mechanism model [J]. Journal of Jiangnan University (Natural Science Edition), 2013, 12(5): 535-540. [5] 陈俐均, 杜尚丰, 李嘉鹏, 等. 温室环境温度预测自适应机理模型参数在线识别方法[J]. 农业工程学报, 2017, 33(S1): 315-321. Chen Lijun, Du Shangfeng, Li Jiapeng, et al. Online identification method of parameters for greenhouse temperature prediction selfadapting mechanism model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 315-321. [6] 束慧. 基于物联网和模糊PID技术的温室智能监控系统[J]. 节水灌溉, 2014(11): 73-76. Shu hui. Intelligent greenhouse monitoring and control system based on internet of things and fuzzy PID technology [J]. Water Saving Irrigation, 2014(11): 73-76. [7] 杨学坤, 韩柏和, 蒋晓. 日光温室系统模型的研究现状与对策[J]. 中国农机化学报, 2017, 38(4): 42-48. Yang Xuekun, Han Baihe, Jiang Xiao. Research status and countermeasures of solar greenhouse system model [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(4): 42-48. [8] FitzRodríguez E, Kubota C, Giacomelli G A, et al. Dynamic modeling and simulation of greenhouse environments under several scenarios: A webbased application [J]. Computers and Electronics in Agriculture, 2010, 70(1): 105-116. [9] Joudi K A, Farhan A A. A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse[J]. Energy Conversion and Management, 2015, 91: 76-82. [10] Lopez A, Valera D L, MolinaAiz F D, et al. Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with padfan and fog systems [J]. Biosystems Engineering, 2012, 113(4): 334-350. [11] Jiang Y, Qin L, Qiu Q, et al. Greenhouse humidity system modeling and controlling based on mixed logical dynamical [C]. Proceedings of the 33rd Chinese Control Conference. IEEE, 2014: 4039-4043. [12] Yang S H, Lee C G, AshtianiAraghi A, et al. Development and evaluation of combustiontype CO2 enrichment system connected to heat pump for greenhouses [J]. Engineering in Agriculture, Environment and Food, 2014, 7(1): 28-33. [13] Umeda H, Ahn D H, Iwasaki Y, et al. A cooling and CO2 enrichment system for greenhouse production using CO2 clathrate hydrate[J]. Engineering in Agriculture, Environment and Food, 2015, 8(4): 307-312. [14] Azaza M, Echaieb K, Tadeo F, et al. Fuzzy decoupling control of greenhouse climate[J]. Arabian Journal for Science and Engineering, 2015, 40(9): 2805-2812. [15] VanegasAyala S C, BarónVelandia J, LealLara D D. A systematic review of greenhouse humidity prediction and control models using fuzzy inference systems[J]. Advances in HumanComputer Interaction, 2022, 2022: 1-16. [16] Lin D, Zhang L, Xia X. Hierarchical model predictive control of Venlotype greenhouse climate for improving energy efficiency and reducing operating cost [J]. Journal of Cleaner Production, 2020, 264: 121513. [17] Elanchezhian A, Basak J K, Park J, et al. Evaluating different models used for predicting the indoor microclimatic parameters of a greenhouse[J]. Applied Ecology and Environmental Research, 2020, 18(2): 2141-2161. [18] Su Y, Xu L. Towards discrete time model for greenhouse climate control[J]. Engineering in Agriculture, Environment and Food, 2017, 10(2): 157-170. [19] Hu H G, Xu L H, Wei R H, et al. RBF network based nonlinear model reference adaptive PD controller design for greenhouse climate[J]. Int. J. Adv. Comput. Technol, 2011, 3: 357-366. [20] Atia D M, Elmadany H T. Analysis and design of greenhouse temperature control using adaptive neurofuzzy inference system [J]. Journal of Electrical Systems and Information Technology, 2017, 4(1): 34-48. [21] Cunha J B, Couto C, Ruano A E B. Realtime parameter estimation of dynamic temperature models for greenhouse environmental control [J]. Control Engineering Practice, 1997, 5(10): 1473-1481. [22] Pohlheim H, Heiner A. Optimal control of greenhouse climate using a short time climate model and evolutionary algorithms [J]. IFAC Proceedings Volumes, 1997, 30(26): 113-118. [23] Coelho J P, de Moura Oliveira P B, Cunha J B. Greenhouse air temperature predictive control using the particle swarm optimisation algorithm [J]. Computers and Electronics in Agriculture, 2005, 49(3): 330-344. [24] Pión S, Camacho E F, Kuchen B, et al. Constrained predictive control of a greenhouse[J]. Computers and Electronics in Agriculture, 2005, 49(3): 317-329. [25] Ferreira P M, Faria E A, Ruano A E. Neural network models in greenhouse air temperature prediction[J]. Neurocomputing, 2002, 43(1-4): 51-75. [26] MárquezVera M A, RamosFernández J C, CereceroNatale L F, et al. Temperature control in a MISO greenhouse by inverting its fuzzy model [J]. Computers and Electronics in Agriculture, 2016, 124: 168-174. [27] Bennis N, Duplaix J, Enéa G, et al. Greenhouse climate modelling and robust control[J]. Computers and Electronics in Agriculture, 2008, 61(2): 96-107. [28] Arvanitis K G, Paraskevopoulos P N, Vernardos A A. Multirate adaptive temperature control of greenhouses [J]. Computers and Electronics in Agriculture, 2000, 26(3): 303-320. [29] Rhinehart R R. Nonlinear regression modeling for engineering applications: Modeling, model validation, and enabling design of experiments [M]. John Wiley & Sons, 2016. [30] Takakura T, Jordan K A, Boyd L L. Dynamic simulation of plant growth and environment in the greenhouse [J]. Transactions of the ASAE, 1971, 14(5): 964-0971. [31] Singh M C, Singh J P, Singh K G. Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media[J]. Computers and Electronics in Agriculture, 2018, 154: 227-238. [32] Choab N, Allouhi A, El Maakoul A, et al. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies [J]. Solar Energy, 2019, 191: 109-137. [33] Saberian A, Sajadiye S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation [J]. Renewable Energy, 2019, 138: 722-737. [34] 周伟, 汪小旵. 温室温度约束模型预测控制研究[J]. 新疆农业科学, 2014, 51(6): 1015-1021. Zhou Wei, Wang Xiaochan. Constrained predictive control model for greenhouse temperature [J]. Xinjiang Agricultural Sciences, 2014, 51(6): 1015-1021. [35] Hui Z, Linlin Q, Gang W. Modeling and simulation of greenhouse temperature hybrid system based on ARMAX model [C]. 2017 36th Chinese Control Conference (CCC). IEEE, 2017: 2237-2241. [36] Samsuri S F M, Ahmad R, Hussein M. Identification and modeling of environmental climates inside naturally ventilated tropical greenhouse [C]. 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. IEEE, 2010: 402-407. [37] Jung D H, Kim H S, Jhin C, et al. Timeserial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse[J]. Computers and Electronics in Agriculture, 2020, 173: 105402. [38] Salgado P, Cunha J B. Greenhouse climate hierarchical fuzzy modelling [J]. Control Engineering Practice, 2005, 13(5): 613-628. [39] Subahi A F, Bouazza K E. An intelligent IoT-based system design for controlling and monitoring greenhouse temperature [J]. IEEE Access, 2020, 8: 125488-125500. [40] Singh V K, Tiwari K N. Prediction of greenhouse microclimate using artificial neural network [J]. Appl. Ecol. Environ. Res, 2017, 15(1): 767-778. [41] Petrakis T, Kavga A, Thomopoulos V, et al. Neural network model for greenhouse microclimate predictions [J]. Agriculture, 2022, 12(6): 780. [42] Dariouchy A, Aassif E, Lekouch K, et al. Prediction of the intern parameters tomato greenhouse in a semiarid area using a timeseries model of artificial neural networks[J]. Measurement, 2009, 42(3): 456-463. [43] CastaedaMiranda A, Castao V M. Smart frost control in greenhouses by neural networks models [J]. Computers and Electronics in Agriculture, 2017, 137: 102-114 [44] Taki M, Ajabshirchi Y, Ranjbar S F, et al. Application of neural networks and multiple regression models in greenhouse climate estimation[J]. Agricultural Engineering International: CIGR Journal, 2016, 18(3): 29-43. [45] Moon T W, Jung D H, Chang S H, et al. Estimation of greenhouse CO2 concentration via an artificial neural network that uses environmental factors [J]. Horticulture Environment and Biotechnology, 2018, 59(1): 45-50. [46] He F, Ma C. Modeling greenhouse air humidity by means of artificial neural network and principal component analysis [J]. Computers and Electronics in Agriculture, 2010, 71: S19-S23. [47] Wang H, SánchezMolina J A, Li M, et al. Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, backpropagation neural networks and nonlinear autoregressive exogenous models[J]. Agricultural Water Management, 2017, 183: 107-115. [48] 申超群, 杨静. 温室温度控制系统的RBF神经网络PID控制[J]. 控制工程, 2017, 24(2): 361-64. Shen Chaoqun, Yang Jing. RBF neural network PID control for greenhouse temperature control system [J]. Control Engineering of China, 2017, 24(2): 361-364. [49] Zeng S, Hu H, Xu L, et al. Nonlinear adaptive PID control for greenhouse environment based on RBF network[J]. Sensors, 2012, 12(5): 5328-5348. [50] Choi H, Moon T, Jung D H, et al. Prediction of air temperature and relative humidity in greenhouse via a multilayer perceptron using environmental factors[J]. Journal of BioEnvironment Control, 2019, 28(2): 95-103. [51] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69. Zhang Chi, Guo Yuan, Li Ming. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021, 57(11): 57-69. [52] Hongkang W, Li L, Yong W, et al. Recurrent neural network model for prediction of microclimate in solar greenhouse [J]. IFACPapers OnLine, 2018, 51(17): 790-795. [53] 张建超, 单慧勇, 景向阳, 等. 基于Elman神经网络的温室环境因子预测方法[J]. 中国农机化学报, 2021, 42(8): 203-208. Zhang Jianchao, Shan Huiyong, Jing Xiangyang, et al. Prediction method of greenhouse environment factors based on Elman neural network[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 203-208. [54] Oo S P Z Z, Phyu S. Cloud and IoT based temperature prediction system for a greenhouse using multivariate convolutional long short term memory network [J]. International Journal of Machine Learning and Computing, 2020, 10(1): 189-194. [55] Fourati F, Chtourou M. A greenhouse neural control using generalized and specialized learning[J]. Energy, 2011, 5: 7. [56] Gharghory S M. Deep network based on long shortterm memory for time series prediction of microclimate data inside the greenhouse[J]. International Journal of Computational Intelligence and Applications, 2020, 19(2): 2050013. [57] Ali A, Hassanein H S. TimeSeries prediction for sensing in smart greenhouses [C]. GLOBECOM 2020—2020 IEEE Global Communications Conference. IEEE, 2020: 1-6. [58] 李莉, 李文军, 马德新, 等. 基于LSTM的温室番茄蒸腾量预测模型研究[J]. 农业机械学报, 2021, 52(10): 369-376. Li Li, Li Wenjun, Ma Dexin, et al. Prediction model of transpiration of greenhouse tomato based on LSTM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 369-376. [59] Liu Y, Li D, Wan S, et al. A long shortterm memorybased model for greenhouse climate prediction[J]. International Journal of Intelligent Systems, 2022, 37(1): 135-151. [60] Moon T, Son J E. Knowledge transfer for adapting pretrained deep neural models to predict different greenhouse environments based on a low quantity of data [J]. Computers and Electronics in Agriculture, 2021, 185: 106136. [61] Tan C, Sun F, Kong T, et al. A survey on deep transfer learning [C]. International Conference on Artificial Neural Networks. Springer, Cham, 2018: 270-279. [62] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017: 30. [63] Geng Y, Dong Y, Zhao L, et al. Desert locust plague monitoring using time series satellite data[J]. International Journal of Precision Agricultural Aviation, 2020, 3(4): 24-30. [64] Jin X B, Zheng W Z, Kong J L, et al. Deeplearning temporal predictor via bidirectional selfattentive encoderdecoder framework for IOTbased environmental sensing in intelligent greenhouse[J]. Agriculture, 2021, 11(8): 802. [65] Zhang K A, Qiang S Y, Liang Z X, et al. A greenhouse temperature prediction framework based on transformer neural network[C]. 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). IEEE, 2021: 232-236. [66] Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence timeseries forecasting [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. [67] Rodríguez F, Arahal M R, Berenguel M. Application of artificial neural networks for greenhouse climate modelling [C]. 1999 European Control Conference (ECC). IEEE, 1999: 2096-2101. [68] Wang J, Han Y. Image inpainting algorithm based on convolutional neural network structure and improved Deep Image Prior[J]. International Journal of Precision Agricultural Aviation, 2020, 3(4): 65-73. [69] 李莉, 李伟, 耿磊, 等. 基于RF-GRU的温室番茄结果前期蒸腾量预测方法[J]. 农业机械学报, 2022, 53(3): 368-376. Li Li, Li Wei, Geng Lei, et al. Prediction method of greenhouse tomatoes transpiration in early fruiting stage based on RF-GRU [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 368-376. |
[1] | 李明, 丁智欢, 赵靖暄, 陈思铭, 李文勇, 杨信廷. 基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法[J]. 中国农机化学报, 2023, 44(5): 63-70. |
[2] | 周显沁, 韩震宇, 刘成源. 基于改进卷积神经网络与图像处理的蚕茧识别方法[J]. 中国农机化学报, 2023, 44(5): 100-106. |
[3] | 刘士坤, , 金诚谦, 陈满, 杨腾祥, 徐金山. 基于DeepLabV3+网络的机收大豆破碎率在线检测方法[J]. 中国农机化学报, 2023, 44(5): 170-175. |
[4] | 王磊, 袁英, 高玲. 基于改进多元宇宙算法的番茄病害图像识别[J]. 中国农机化学报, 2023, 44(5): 176-181. |
[5] | 付豪, , 赵学观, 翟长远, , 郑康, 郑申玉, 王秀. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207. |
[6] | 段宇飞, , 董庚, 孙记委, 王焱清, . 基于SE-ResNet网络的油茶果果壳与茶籽分选模型[J]. 中国农机化学报, 2023, 44(4): 89-95. |
[7] | 李岩舟, 何艳洲, , 覃锋, , 钱万强, 吴媚, 乔曦, . 基于卷积神经网络的互花米草识别研究[J]. 中国农机化学报, 2023, 44(4): 159-166. |
[8] | 轩梦辉, 赵思夏, 徐立友, 陈小亮, 李团飞. 改进VMD和LSTM的联合收割机装配质量检测方法[J]. 中国农机化学报, 2023, 44(3): 132-140. |
[9] | 王新彦, 易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报, 2023, 44(3): 171-176. |
[10] | 佟敏, 史昌明, 马善为, 崔亚茹, 李凯. 基于互信息参数优化BP神经网络的生物质发电量预测研究[J]. 中国农机化学报, 2023, 44(2): 126-131. |
[11] | 何雨霜, 王琢, 王湘平, 肖进, 罗友谊, 张俊峰. 深度学习在农作物病害图像识别中的研究进展[J]. 中国农机化学报, 2023, 44(2): 148-155. |
[12] | 任浩, , 李丽, , 卢世博, , 陈静姚, 张云峰, . 基于深度学习的复杂自然环境下桑树枝干识别方法[J]. 中国农机化学报, 2023, 44(2): 182-188. |
[13] | 李慧燕, 张淑荣, 江智伟. 现代都市型农业背景下生鲜乳价格波动预警研究——以天津市为例[J]. 中国农机化学报, 2023, 44(2): 222-229. |
[14] | 杨文姬, 胡文超, 赵应丁, 钱文彬. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115. |
[15] | 毛晓娟, 鲍彤, 荀广连, 李德翠, 王宝佳, 任妮. 基于GWO-LSTM的设施蔬菜温室温度预测[J]. 中国农机化学报, 2023, 44(1): 116-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296