[1]
王慧, 李梅兰, 许建平, 等. 基于冠层温湿度模型的日光温室黄瓜霜霉病预警方法[J]. 应用生态学报,
2015, 26(10): 3027-3034.
Wang Hui, Li Meilan, Xu Jianping, et al. An early warning method of cucumber downy mildew in
solar greenhouse based on canopy temperature and humidity modeling [J]. Chinese Journal of
Applied Ecology, 2015, 26(10): 3027-3034.
[2]
Liu Ran, Wang Hui, Guzmán J L, et al. A modelbased methodology for the early warning
detection of cucumber downy mildew in greenhouses: An experimental evaluation [J].
Computers and Electronics in Agriculture, 2022, 194: 106751.
[3]
高士刚, 罗金燕, 曾蓉, 等. 一体化智能孢子捕捉系统在黄瓜霜霉病和黄瓜白粉病预测上的应用[J].
植物保护学报, 2017, 44(5): 779-787.
Gao Shigang, Luo Jinyan, Zeng Rong, et al. Application of newlydeveloped automatic spore
trap and identification system in forecasting cucumber downy mildew and cucumber powdery
mildew [J]. Journal of Plant Protection, 2017, 44(5): 779-787.
[4]
Lei Yu, Yao Zhifeng, He Dongjian. Automatic detection and counting of urediniospores of
Puccinia striiformis f sp tritici using spore traps and image processing [J]. Scientific
Reports, 2018, 8(1): 1-11.
[5]
李小龙, 马占鸿, 孙振宇, 等. 基于图像处理的小麦条锈病菌夏孢子模拟捕捉的自动计数[J]. 农业工
程学报, 2013, 29(2): 199-206.
Li Xiaolong, Ma Zhanhong, Sun Zhenyu, et al. Automatic counting for trapped urediospores of
Puccinia striiformis f. sp. tritici based on image processing [J]. Transactions of the
Chinese Society of Agricultural Engineering, 2013, 29(2): 199-206.
[6]
齐龙, 蒋郁, 李泽华, 等. 基于显微图像处理的稻瘟病菌孢子自动检测与计数方法[J]. 农业工程学报,
2015, 31(12): 186-193.
Qi Long, Jiang Yu, Li Zehua, et al. Automatic detection and counting method for spores of
rice blast based on micro image processing [J]. Transactions of the Chinese Society of
Agricultural Engineering, 2015, 31(12): 186-193.
[7]
王震, 褚桂坤, 王金星, 等. 基于HOG特征的IKSVM稻瘟病孢子检测[J]. 农业机械学报, 2018, 49(S1):
387-392.
Wang Zhen, Chu Guikun, Wang Jinxing, et al. Spores detection of rice blast by IKSVM based on
HOG features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018,
49(S1): 387-392.
[8]
Liang Xinshen, Wang Botao. Wheat powdery mildew spore images segmentation based on UNet [
J]. Journal of Physics: Conference Series, 2020, 1631: 012074.
[9]
雷雨, 周晋兵, 何东健, 等. 基于改进CenterNet的小麦条锈病菌夏孢子自动检测方法[J]. 农业机械学
报, 2021, 52(12): 233-241.
Lei Yu, Zhou Jinbing, He Dongjian, et al. Automatic detection method for urediniospores of
wheat stripe rust based on improved CenterNet model [J]. Transactions of the Chinese
Society for Agricultural Machinery, 2021, 52(12): 233-241.
[10]
Zhang Ying, Li Jiangtao, Tang Fang, et al. An automatic detector for fungal spores in
microscopic images based on deep learning [J]. Applied Engineering in Agriculture,2021,
37(1): 85-94.
[11]
李伟强, 王东, 宁政通, 等. 计算机视觉下的果实目标检测算法综述[J]. 计算机与现代化, 2022(6):
87-95.
Li Weiqiang, Wang Dong, Ning Zhengtong, et al. Survey of fruit object detection algorithms
in computer vision [J]. Computer and Modernization, 2022(6): 87-95.
[12]
Wang Qifan, Cheng Man, Huang Shuo, et al. A deep learning approach incorporating YOLOv5 and
attention mechanisms for field realtime detection of the invasive weed Solanum rostratum
Dunal seedlings [J]. Computers and Electronics in Agriculture, 2022, 199: 107194.
[13]
商枫楠, 周学成, 梁英凯, 等. 基于改进YOLOX的自然环境中火龙果检测方法[J]. 智慧农业(中英文),
2022, 4(3): 120-131.
Shang Fengnan, Zhou Xuecheng, Liang Yingkai, et al. Detection method for dragon fruit in
natural environment based on improved YOLOX [J]. Smart Agriculture, 2022, 4(3): 120-131.
[14]
黄少华, 梁喜凤. 基于改进YOLOv5的茶叶杂质检测算法[J]. 农业工程学报, 2022, 38(17): 329-336.
Huang Shaohua, Liang Xifeng. Detecting the impurities in tea using an improved YOLOv5 model
[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 329-
336.
[15]
苏斐, 张泽旭, 赵妍平, 等. 基于轻量化YOLO-v3的绿熟期番茄检测方法[J]. 中国农机化学报, 2022,
43(3): 132-137.
Su Fei, Zhang Zexu, Zhao Yanping, et al. Detection of mature green tomato based on
lightweight YOLO-v3 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 132-
137.
[16]
Shi Rui, Li Tianxing, Yamaguchi Y. An attributionbased pruning method for realtime mango
detection with YOLO network [J]. Computers and Electronics in Agriculture, 2020(169):
105214.
[17]
张兆国, 张振东, 李加念, 等. 采用改进YoloV4模型检测复杂环境下马铃薯[J]. 农业工程学报, 2021,
37(22): 170-178.
Zhang Zhaoguo, Zhang Zhendong, Li Jianian, et al. Potato detection in complex environment
based on improved YoloV4 model [J]. Transactions of the Chinese Society of Agricultural
Engineering, 2021, 37(22): 170-178.
[18]
Wang Chienyao, Liao Hongyuan, Wu Yuehua, et al. CSPNetA new backbone that can enhance
learning capability of CNN [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2020: 1571-1580.
[19]
He Kaiminng, Zhang Xiangyu, Ren Shaoqing, et al. Spatial pyramid pooling in deep
convolutional networks for visual recognition [C]. Proceedings of the European Conference
on Computer Vision (ECCV), 2014: 346-361.
[20]
尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学
报, 2022, 38(9): 222-229.
Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning using YOLOv5s to apple
flower detection in natural scenes [J]. Transactions of the Chinese Society of
Agricultural Engineering, 2022, 38(9): 222-229.
[21]
黄丽明, 王懿祥, 徐琪, 等. 采用YOLO算法和无人机影像的松材线虫病异常变色木识别[J]. 农业工程
学报, 2021, 37(14): 197-203.
Huang Liming, Wang Yixiang, Xu Qi, et al. Recognition of abnormally discolored trees caused
by pine wilt disease using YOLO algorithm and UAV images [J]. Transactions of the Chinese
Society of Agricultural Engineering, 2021, 37(14): 197-203.
[22]
Lin T Y, Piotr D, Girshick R, et al. Feature Pyramid Networks for object detection [C].
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-
2125.
[23]
Liu Shu, Qi Lu, Qin Haifang, et al. Path aggregation network for instance segmentation [C]
. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759
-8768.
[24]
巢渊, 刘文汇, 唐寒冰, 等. 基于改进YOLO-v4的室内人脸快速检测方法[J]. 计算机工程与应用,
2022, 58(14): 105-113.
Chao Yuan, Liu Wenhui, Tang Hanbing, et al. Fast indoor face detection method based on
improved YOLO-v4 [J]. Computer Engineering and Applications, 2022, 58(14): 105-113.
[25]
田枫, 贾昊鹏, 刘芳. 改进YOLOv5的油田作业现场安全着装小目标检测[J]. 计算机系统应用, 2022,
31(3): 159-168.
Tian Feng, Jia Haopeng, Liu Fang. Small target detection in oilfield operation field based
on improved YOLOv5 [J]. Computer Systems & Applications, 2022, 31(3): 159-168.
[26]
Han Kai, Wang Yunhe, Tian Qi, et al. GhostNet: More features from cheap operations [C].
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586.
[27]
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module [C]. Proceedings
of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[28]
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context [C].
Proceedings of the European Conference on Computer Vision (ECCV), 2014: 740-755.
[29]
张志远, 罗铭毅, 郭树欣, 等. 基于改进YOLOv5的自然环境下樱桃果实识别方法[J]. 农业机械学报,
2022, 53(s1): 232-240.
Zhang Zhiyuan, Luo Mingyi, Guo Shuxin, et al. Cherry fruit detection method in natural scene
based on improved YOLOv5 [J]. Transactions of the Chinese Society for Agricultural
Machinery, 2022, 53(s1): 232-240.
[30]
宋怀波, 王亚男, 王云飞, 等. 基于YOLOv5s的自然场景油茶果识别方法[J]. 农业机械学报, 2022,
53(7): 234-242.
Song Huaibo, Wang Yanan, Wang Yunfei, et al. Camellia oleifera fruit detection in natural
scene based on YOLOv5s [J]. Transactions of the Chinese Society for Agricultural
Machinery, 2022, 53(7): 234-242.
[31]
Zheng Zhaohui, Wang Ping, Liu Wei, et al. DistanceIou loss: Faster and better learning for
bounding box regression [C]. Proceedings of the AAAI Conference on Artificial
Intelligence, 2020(34): 7.
|