[1] 陈永宁, 周娜, 陈婕, 等. 我国蔬菜种业发展现状、融资结构及经营绩效研究[J]. 北方金融, 2023(2): 40-46.
[2] 中华人民共和国农业农村部. 2021年保护地蔬菜重要害虫生物防治技术方案[EB/OL]. http://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363457.htm, 2021-03-11.
[3] Liu L, Ouyang W, Wang X, et al. Deep learning for generic object detection: A survey [J]. International Journal of Computer Vision, 2020, 128(2): 261-318.
[4] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2018.
[5] 韩瑞珍. 基于机器视觉的农田害虫快速检测与识别研究[D]. 杭州: 浙江大学, 2014.Han Ruizhen. Research on fast detection and identification of field pests based on machine vision [D]. Hangzhou: Zhejiang University, 2014.
[6] Yao Q, Xian D, Liu Q, et al. Automated counting of rice planthoppers in paddy fields based on image processing [J]. Journal of Integrative Agriculture, 2014, 13(8): 1736-1745.
[7] Yao Q, Chen G, Wang Z, et al. Automated detection and identification of whitebacked planthoppers in paddy fields using image processing [J]. Journal of Integrative Agriculture, 2017, 16(7): 1547-1557.
[8] 杨国国. 基于机器视觉的中华稻蝗早期蝗蝻的识别和检测研究[D]. 杭州: 浙江大学, 2017.Yang Guoguo. The research of recognition and detection of oxya chinensis larva based on computer vision [D]. Hangzhou: Zhejiang University, 2017.
[9] 田冉, 陈梅香, 董大明, 等. 红外传感器与机器视觉融合的果树害虫识别及计数方法[J]. 农业工程学报, 2016, 32(20): 195-201.
Tian Ran, Chen Meixiang, Dong Daming, et al. Identification and counting method of orchard pests based on fusion method of infrared sensor and machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 195-201.
[10] Rustia D J A, Lin C E, Chung J Y, et al. Application of an image and environmental sensor network for automated greenhouse insect pest monitoring [J]. Journal of AsiaPacific Entomology, 2019, 23(1): 17-28.
[11] 肖德琴, 张玉康, 范梅红, 等. 基于视觉感知的蔬菜害虫诱捕计数算法[J]. 农业机械学报, 2018, 49(3): 51-58.
Xiao Deqin, Zhang Yukang, Fan Meihong, et al. Vegetable pest counting algorithm based on visual perception [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 51-58.
[12] 卜俊怡, 孙国祥, 王迎旭, 等. 基于诱虫板图像的温室番茄作物害虫识别与监测方法[J]. 南京农业大学学报, 2021, 44(2): 373-383.
Bu Junyi, Sun Guoxiang, Wang Yingxu, et al.Identification and monitoring method of tomato crop pests in greenhouse based on trapping board image [J]. Journal of Nanjing Agricultural University, 2021, 44(2): 373-383.
[13] 邹修国, 丁为民, 刘德营, 等. 基于4种不变矩和BP神经网络的稻飞虱分类[J]. 农业工程学报, 2013, 29(18): 171-178.
Zou Xiuguo, Ding Weimin, Liu Deying, et al. Classification of rice planthopper based on invariant moments and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 171-178.
[14] 李震, 邓忠易, 洪添胜, 等. 基于神经网络的实蝇成虫图像识别算法[J]. 农业机械学报, 2017, 48(S1): 129-135.
Li Zhen, Deng Zhongyi, Hong Tiansheng, et al. Image recognition algorithm for fruit flies based on bp neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 129-135.
[15] 李震, 洪添胜, 曾祥业, 等. 基于K-means聚类的柑橘红蜘蛛图像目标识别[J]. 农业工程学报, 2012, 28(23): 147-153, 299.
Li Zhen, Hong Tiansheng, Zeng Xiangye, et al. Citrus red mite image target identification based on K-means clustering [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 147-153, 299.
[16] 王志彬, 王开义, 张水发, 等. 基于K-means聚类和椭圆拟合方法的白粉虱计数算法[J]. 农业工程学报, 2014, 30(1): 105-112.Wang Zhibin, Wang Kaiyi, Zhang Shuifa, et al.Whiteflies counting with K-means clustering and ellipse fitting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 105-112.
[17] 李季, 杨淑婷, 马菁. 基于计算机视觉的枸杞虫害计数方法研究[J]. 宁夏农林科技, 2018, 59(10): 50-52.Li Ji, Yang Shuting, Ma Jing. Counting method of wolfberry pests based on computer vision [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(10): 50-52.
[18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [C]. Curran Associates Inc. International Conference on Neural Information Processing Systems, 2012.
[19] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv Preprint, 2014: 1409.1556.
[20] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. CVPR. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, 2015: 1-9.
[21] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. CVPR. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, 2016: 770-778.
[22] Tan M, Le Q V. EfficientNetV2: Smaller models and faster training [J]. ArXiv Preprint, 2021: 2104.00298v3.
[23] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 580-587.
[24] Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448.
[25] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [C]. Proceedings of Advances in Neural Information Processing Systems 2015, 2015: 91-99.
[26] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 779-788.
[27] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Proceedings Lecture Notes in Computer Science. Computer Vision-14th European Conference (ECCV 2016), 2016: 21-37.
[28] Liu Z, Gao J, Yang G, et al. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network [J]. Scientific Reports, 2016, 6: 20410.
[29] 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162.Yang Guoguo, Bao Yidan, Liu Ziyi. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162.
[30] Jiao L, Dong S, Zhang S, et al. AF-RCNN: An anchorfree convolutional neural network for multicategories agricultural pest detection [J]. Computers and Electronics in Agriculture, 2020, 174: 105522.
[31] Dong S, Wang R, Liu K, et al. CRA-Net: A channel recalibration feature pyramid network for detecting small pests [J]. Computers and Electronics in Agriculture, 2021, 191: 106518.
[32] Wang R, Jiao L, Xie C, et al. S-RPN: Samplingbalanced region proposal network for small crop pest detection [J]. Computers and Electronics in Agriculture, 2021, 187: 106290.
[33] Shen Y, Zhou H, Li J, et al. Detection of storedgrain insects using deep learning [J]. Computers and Electronics in Agriculture, 2018, 145: 319-325.
[34] 肖德琴, 黄一桂, 张远琴, 等. 基于改进Faster R-CNN的田间黄板害虫检测算法[J]. 农业机械学报, 2021, 52(6): 242-251.
Xiao Deqin, Huang Yigui, Zhang Yuanqin, et al. Pest detection algorithm of yellow plate in field based on improved Faster R-CNN [J]. Transactions of the Chinese Society for agricultural Machinery, 2021, 52(6): 242-251.
[35] Li W, Wang D, Li M, et al. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse [J]. Computers and Electronics in Agriculture, 2021, 183: 106048.
[36] Li W, Chen P, Wang B, et al. Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline [J]. Scientific Reports, 2019, 9: 7024-7033.
[37] Wang F, Wang R, Xie C, et al. Fusing multiscale contextaware information representation for automatic infield pest detection and recognition[J]. Computers and Electronics in Agriculture, 2020, 169: 105222.
[38] Liu L, Xie C, Wang R, et al. Deep learning based automatic multiclass wild pest monitoring approach using hybrid global and local activated features [J]. IEEE Transactions on Industrial Informatics, 2020, 17(11): 7589-7598.
[39] Ding W, Taylor G. Automatic moth detection from trap images for pest management [J]. Computers and Electronics in Agriculture, 2016, 123: 17-28.
[40] Partel V, Nunes L, Stansly P, et al. Automated visionbased system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence [J]. Computers and Electronics in Agriculture, 2019, 162: 328-336.
[41] Chen J, Lin W, Cheng H, et al. A smartphonebased application for scale pest detection using multipleobject detection methods [J]. Electronics, 2021, 10(4): 372.
[42] Zha M, Qian W, Yi W, et al. A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion [J]. Entropy, 2021, 23(12): 1587.
[43] Chen C J, Huang YY, Li Y S, et al. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying [J]. IEEE Access, 2021, 9: 21986-21997.
[44] He Y, Zeng H, Fan Y, et al. Application of deep learning in integrated pest management: A realtime system for detection and diagnosis of oilseed rape pests [J]. Mobile Information Systems, 2019, 2019: 1-14.
[45] 吴丽芳. 基于智慧时代的农业4.0模式及发展策略研究[J]. 农业经济, 2021(5): 9-11.
[46] Shen Z, Liu J, He Y, et al. Towards outofdistribution generalization: A survey [J]. arXiv Preprint, 2021: 2108.13624.
[47] Joseph K J, Khan S, Khan F S, et al. Towards open world object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 5830-5840.
|