中国农机化学报 ›› 2023, Vol. 44 ›› Issue (5): 188-197.DOI: 10.13733/j.jcam.issn.2095-5553.2023.05.026
徐衍向1,张敬智2,兰玉彬1, 3,孙越梅1,韩鑫1,白京波2
出版日期:
2023-05-15
发布日期:
2023-06-02
基金资助:
Xu Yanxiang1, Zhang Jingzhi2, Lan Yubin1, 3, Sun Yuemei1, Han Xin1, Bai Jingbo2
Online:
2023-05-15
Published:
2023-06-02
摘要: 作物的早期病害检测作为针对性的防治手段已经成为智慧农业在病害方面的趋势,实现作物早期病害检测可以做到早发现,早治疗,减少作物农药使用,提高作物品质,减少经济损失。首先介绍作物病害的机制和红外热成像原理,发现红外热成像技术可以进行作物早期病害的检测;其次介绍红外热成像和机器学习的工作原理,综合概述国内外机器学习和红外热成像技术在病害识别领域的研究现状;分析红外热图像的缺点并使用机器学习进行改进,综述机器学习应用于处理红外热图像和红外热成像技术与机器学习相结合应用于作物病害的国内外现状,发现机器学习对红外热图像的缺点有着改进作用,还发现通过两种技术结合使用可以结合两者的优点进行更快更早的作物病害检测;最后通过分析现有研究成果,讨论现存的问题并提出相应的解决方法,对未来的研究趋势进行展望。
中图分类号:
徐衍向, 张敬智, 兰玉彬, , 孙越梅, 韩鑫, 白京波. 于红外热成像和机器学习的作物早期病害识别研究进展[J]. 中国农机化学报, 2023, 44(5): 188-197.
Xu Yanxiang, Zhang Jingzhi, Lan Yubin, , Sun Yuemei, Han Xin, Bai Jingbo. Research progress of early crop disease identification based on infrared thermal imaging and machine learning[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 188-197.
[1] 吴迪, 冯雷, 张传清, 等. 基于可见/近红外光谱技术的番茄叶片灰霉病检测研究[J]. 光谱学与光谱分析, 2007, 27(11): 2208-2211. Wu Di, Feng Lei, Zhang Chuanqing, et al. Study on the detection of gray mold of tomato leave based on visnear infrared spectra[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2208-2211. [2] 冯雷, 张德荣, 陈双双, 等. 基于高光谱成像技术的茄子叶片灰霉病早期检测[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 311-317. Feng Lei, Zhang Derong, Chen Shuangshuang, et al. Early detection of gray mold on eggplant leaves using hyperspectral imaging technique [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 311-317. [3] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019(S1): 313-317. Jia Shaopeng, Gao Hongju, Hang Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019(S1): 313-317. [4] 刘媛媛, 张凡, 师琪, 等. 基于高光谱和集成学习的库尔勒香梨黑斑病潜育期诊断[J]. 农业机械学报, 2022, 53(6): 295-303. Liu Yuanyuan, Zhang Fan, Shi Qi, et al. Diagnosis of korla fragrant pear black spot in incubation period based on hyperspectral imaging and ensemble learning algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 295-303. [5] 徐惠荣, 应义斌. 红外热成像在树上柑桔识别中的应用研究[J]. 红外与毫米波学报, 2004(5): 353-356. Xu Huirong, Ying Yibin. Application of infrared thermal imaging in identification of citrus on trees [J]. Journal of Infrared and Millimeter Waves, 2004(5): 353-356.. [6] Omasa K, Takayama K. Simultaneous measurement of stomatal conductance, nonphotochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging[J]. Plant and Cell Physiology, 2003, 44(12): 1290-1300. [7] Prytz G, Futsaether C M, Johnsson A. Thermography studies of the spatial and temporal variability in stomatal conductance of Avena leaves during stable and oscillatory transpiration[J]. New Phytologist, 2003, 158(2): 249-258. [8] 王斐, 山本晴彦. 用红外热像法检测一些树木枝叶温度的研究[J]. 光谱学与光谱分析, 2010, 30(11): 2914-2918. Wang Fei, Yamamoto Haruhiko. Detecting leaf and twig temperature of some trees by using thermography[J]. Spectroscopy and Spectral Analysis, 2010, 30(11): 2914-2918. [9] 梁喜龙, 郑殿峰, 左豫虎. 病害逆境下寄主植物生理生化指标的研究现状与展望[J]. 安徽农业科学, 2006(15): 3576-3578. Liang Xilong, Zheng Dianfeng, Zuo Yuhu. Research status and prospect of physiological and biochemical indexes of plant host under disease stress[J]. Journal of Anhui Agricultural Sciences, 2006, (15): 3576-3578. [10] Berger S, Papadopoulos M, Schreiber U, et al. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato[J]. Physiologia Plantarum, 2004, 122(4): 419-428. [11] Lindenthal M, Steiner U, Dehne H W, et al. Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography[J]. Phytopathology, 2005, 95(3): 233-240. [12] Chou H M, Bundock N, Rolfe S A, et al. Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism [J]. Molecular plant pathology, 2000, 1(2): 99-113. [13] Chaerle L, Caeneghem W V, Messens E, et al. Presymptomatic visualization of plantvirus interactions by thermography [J]. Nature Biotechnology, 1999, 17(8): 813-816. [14] Chaerle L, Hagenbeek D, De Bruyne E, et al. Thermal and chlorophyllfluorescence imaging distinguish plantpathogen interactions at an early stage [J]. Plant and Cell Physiology, 2004, 45(7): 887-896. [15] Oerke E C, Steiner U, Dehne H W, et al. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions[J]. Journal of Experimental Botany, 2006, 57(9): 2121-2132. [16] Baranowski P, Jedryczka M, Mazurek W, et al. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria [J]. PloS one, 2015, 10(3): e0122913. [17] Belin , Rousseau D, Boureau T, et al. Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab [J]. Computers and Electronics in Agriculture, 2013, 90: 159-163. [18] Stoll M, Schultz H R, BerkelmannLoehnertz B. Exploring the sensitivity of thermal imaging for Plasmopara viticola pathogen detection in grapevines under different water status[J]. Functional Plant Biology, 2008, 35(4): 281-288. [19] Baranowski P, Jedryczka M, Mazurek W, et al. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria [J]. PloS one, 2015, 10(3): e0122913. [20] Rispail N, Rubiales D. Rapid and efficient estimation of pea resistance to the soilborne pathogen Fusarium oxysporum by infrared imaging [J]. Sensors, 2015, 15(2): 3988-4000. [21] Kim J, Kweon S G, Park J, et al. Digital infrared thermal imaging of crape myrtle leaves infested with sooty mold [J]. The Plant Pathology Journal, 2016, 32(6): 563. [22] Wang Y, ZiaKhan S, OwusuAdu S, et al. Early detection of Zymoseptoria tritici in winter wheat by infrared thermography[J]. Agriculture, 2019, 9(7): 139. [23] Xu H, Zhu S, Ying Y, et al. Early detection of plant disease using infrared thermal imaging[C]. Optics for Natural Resources, Agriculture, and Foods. SPIE, 2006, 6381: 302-308. [24] 徐小龙, 蒋焕煜, 杭月兰. 热红外成像用于番茄花叶病早期检测的研究[J]. 农业工程学报, 2012, 28(5): 145-149. Xu Xiaolong, Jiang Huanyu, Hang Yuelan. Study on detection of tomato mosaic disease at early stage based on infrared thermal imaging [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 145-149. [25] 李小龙, 王库, 马占鸿, 等. 基于热红外成像技术的小麦病害早期检测[J]. 农业工程学报, 2014, 30(18): 183-189. Li Xiaolong, Wang Ku, Ma Zhanhong, et al. Early detection of wheat disease based on thermal infrared imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 183-189. [26] 江涛. 利用红外摄像机预测植物发病[J]. 红外, 2000(6): 43. [27] 朱圣盼. 基于计算机视觉技术的植物病害检测方法的研究[D].杭州: 浙江大学, 2007. Zhu Shengpan. Research on detection methods of plan disease using computer vision[D]. Hangzhou: Zhejiang University, 2007. [28] Wang M, Ling N, Dong X, et al. Thermographic visualization of leaf response in cucumber plants infected with the soilborne pathogen Fusarium oxysporum f. sp. cucumerinum[J]. Plant Physiology and Biochemistry, 2012, 61: 153-161. [29] 姚志凤, 雷雨, 何东健. 基于高光谱成像的小麦白粉病与条锈病识别(英文)[J]. 光谱学与光谱分析, 2019, 39(3): 969-976. Yao Zhifeng, Lei Yu, He Dongjian. Identification of powdery mildew and stripe rust in wheat using hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 969-976. [30] 孙瑜阳. 深度学习及其在图像分类识别中的研究综述[J]. 信息技术与信息化, 2018(1): 138-140. [31] Jiang Lu, Hu Jie, Zhao Guannan, et al. An infield automatic wheat disease diagnosis system [J]. Computers and Electronics in Agriculture, 2017, 142: 369-379. [32] 陈善雄, 伍胜, 于显平, 等. 基于卷积神经网络结合图像处理技术的荞麦病害识别[J]. 农业工程学报, 2021, 37(3): 155-163. Chen Shanxiong, Wu Sheng, YuXianping, et al. Buckwheat disease recognition using convolution neural network combined with image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 155-163. [33] 樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159. Fan Xiangpeng, Xu Yan, Zhou Jianping, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159. [34] 刘文波, 叶涛, 李颀. 基于改进SOLO v2的番茄叶部病害检测方法[J]. 农业机械学报, 2021, 52(8): 213-220. Liu Wenbo, Ye Tao, Li Qi. Tomato leaf disease detection method based on improved SOLO v2 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 213-220. [35] 马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. Ma Juncheng, Du Keming, Zheng Feixiang, et al. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 186-192. [36] Liu B, Zhang Y, He D J, et al. Identification of apple leaf diseases based on deep convolutional neural networks [J]. Symmetry, 2017, 10(1): 11. [37] Khan M A, Akram T, Sharif M, et al. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features [J]. Computers and Electronics in Agriculture, 2018, 155: 220-236. [38] 黄林生, 罗耀武, 杨小冬, 等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报, 2021, 52(10): 264-271. Huang Linsheng, Luo Yaowu, Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multiscale residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271. [39] 何自芬, 黄俊璇, 刘强, 等. 基于非对称混洗卷积神经网络的苹果叶部病害分割[J]. 农业机械学报, 2021, 52(8): 221-230. He Zifen, Huang Junxuan, Liu Qiang, et al. High precision ldentification of apple leaf diseases based on asymmetric shuffle convolution[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 221-230. [40] 樊湘鹏, 周建平, 许燕, 等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报, 2021, 52(3): 210-217. Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Corn disease recognition under complicated background based on improved convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 210-217. [41] 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590-601. Liu Ying, Liu Hongyan, Fan Jiulun, et al. Asurvey of research and application of small object detection based on deep learning [J]. Acta Electronica Sinica, 2020, 48(3): 590-601. [42] 林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37. Lin Jingdong, Wu Xinyi, Chai Yi, et al. Structure optimization of convolutional neural networks: A survey [J]. Acta Automatica Sinica, 2020, 46(1): 24-37. [43] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018,34(18): 194-201. Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of camellia oleifera diseases based on convolutional neural network & transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201. [44] Solemane Coulibaly, KamsuFoguem Bernard, Kamissoko Dantouma, et al. Deep neural networks with transfer learning in millet crop images [J]. Computers in Industry, 2019, 108: 115-120. [45] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236. Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition ofcorn leaf spot and rust based on ‘transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236. [46] Xu D, Wang Y, Xu S, et al. Infrared and visible image fusion with a generative adversarial network and a residual network [J]. Applied Sciences, 2020, 10(2): 554. [47] 吴强, 王新赛, 贺明, 等. 一种结合小波分析与直方图的红外图像增强方法[J]. 应用光学, 2011, 32(3): 464-467. Wu Qiang, Wang Xinsai, He Ming, et al. Infrared image enhancement based on wavelet analysis and histogram [J]. Journal of Applied Optics, 2011, 32(3): 464-467. [48] 周妮, 张湧, 吴滢跃. 一种新的实时红外图像增强技术[J]. 红外技术, 2010, 32(6): 324-327. Zhou Ni, Zhang Yong, Wu Yingyue. A new realtime image enhancement in iR imaging system [J]. Infrared Technology, 2010, 32(6): 324-327. [49] Pizer S M, Zimmerman J B, Staab E V. Adaptive grey level assignment in CT scan display[J]. Journal of Computer Assisted Tomography, 1984, 8(2): 300-305. [50] Zhang H, CasasecadelaHiguera P, Luo C, et al. Systematic infrared image quality improvement using deep learning based techniques [C]. Remote Sensing Technologies and Applications in Urban Environments. SPIE, 2016, 10008: 198-205. [51] 苏庆旦. 红外热成像系统实现及其图像增强技术研究[D]. 西安: 西安电子科技大学, 2015. Su Qingdan. Implementation of infrared thermal imaging system and research of its image enhancement technology [D]. Xian: Xidian University, 2015. [52] 崔帅. 红外热图像增强技术对植物病害监测研究[D]. 长沙: 湖南农业大学, 2015. Cui Shuai. Monitoring of infrared thermal image enhancement technology for plant disease [D]. Changsha: Hunan Agricultural University, 2015. [53] 邵志明, 王怀彬, 董志城, 等. 基于近红外相机成像和阈值分割的苹果早期损伤检测[J]. 农业机械学报, 2021, 52(S1): 134-139. Shao Zhiming, Wang Huaibin, Dong Zhicheng, et al. Early bruises detection method of apple surface based on near infrared camera imaging technology and image ‘threshold segmentation method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 134-139. [54] 于飞, 丁琳, 惠梅, 等. 一种用于非制冷红外热成像系统的图像增强方法[J]. 光学技术, 2019, 45(1): 85-89. Yu Fei, Ding Lin, Hui Mei, et al. An image enhancement method for uncooled infrared thermal imaging system [J]. Optical Technique, 2019, 45(1): 85-89. [55] Kwasniewska A, Ruminski J, Szankin M, et al. Superresolved thermal imagery for highaccuracy facial areas detection and analysis [J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103263. [56] Liu Y, Chen X, Cheng J, et al. Infrared and visible image fusion with convolutional neural networks [J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. [57] 张维林. 基于多传感器红外成像系统的图像融合及目标检测算法研究[D]. 青岛: 山东大学, 2020. Zhang Weilin. Research on image fusion and target detection algorithm based on multiinfrared imaging system [D]. Qingdao: Shandong University, 2020. [58] Xu D, Wang Y, Xu S, et al. Infrared and visible image fusion with a generative adversarial network and a residual network [J]. Applied Sciences, 2020, 10(2): 554. [59] 吴穗岚, 陈乐, 曾涛. 基于卷积神经网络的膝关节炎患者的膝盖红外图像分类[J]. 中国计量大学学报, 2019, 30(2): 185-190. Wu Huilan, Chen Le, Zeng Tao. Knee infrared image classification of knee arthritis patients based on convolutional neural networks[J]. Journal of China University of Metrology, 2019, 30(2): 185-190. [60] 侯丽. 基于AdaBoost和深度学习的红外乳腺癌检测方法研究[D]. 武汉: 华中科技大学, 2017. Hou Li. Detection of breast cancer with infrared thermal images based on AdaBoost and deep learning [D]. Wuhan: Huazhong University, 2017. [61] Sami Ekici, Jawzal Hushang. Breast cancer diagnosis using thermography and convolutional neural networks [J]. Medical Hypotheses, 2020, 137: 109542. [62] 刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33. Liu Yunpeng, Pei Shaotong, Wu Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33. [63] 张永明, 王克威, 张启兴, 等. 一种基于红外图像特征融合的高温铝液模拟泄漏监测算法[J]. 安全与环境学报, 2020, 20(2): 518-523. Zhang Yongming, Wang Kewei, Zhang Qixing, et al. Simulated leakage monitoring algorithm for hightemperature molten aluminum based on the infrared image feature fusion [J]. Journal of Safety and Environment, 2020, 20(2): 518-523. [64] 袁宏永, 疏学明, 陈涛, 等. 大型炼油设备红外热像检测的实验研究[J]. 激光与红外, 2003(5): 323-325. Yuan Hongyong, Shu Xueming, Chen Tao, et al. Experimental study on temperature measurement of large refinery facility by infrared thermography [J]. Laser & Infrared, 2003(5): 323-325. [65] 陈晓军, 袁宏永, 谢辉. 红外热像技术在电气火灾隐患检测中的应用[J]. 红外技术, 1999(4): 40-43. Chen Xiaojun, Yuan Hongyong, Xie Hui. Application of thermal imaging in detecting hidden dangers of electric fire [J]. Infrared Technology, 1999(4): 40-43. [66] 詹福如, 袁宏永, 疏学明, 等. 红外双波段可燃气体探测电路的实现和改进[J]. 激光与红外, 2002(3): 155-157. Zhan Furu, Yuan Hongyong, Shu Xueming, et al. Improvement of the circuit for detecting flammable gases by double infrared wavelength [J]. Laser & Infrared, 2002(3): 155-157. [67] 吴兆明, 郑嫦娥, 上官晓锐. 基于红外图像的林火识别方法及实现[J]. 中国农业资源与区划, 2016, 37(8): 21-26. Wu Zhaoming, Zheng Change, Shangguan Xiaorui. Implementation of forest fire recognition based on infrared image [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 21-26. [68] 何鹏, 李春林. 热成像型森林火灾报警系统设计及其图像处理方法研究[J]. 微计算机信息, 2006(1): 98-99. He Peng, Li Chunlin. A forest fire alarming system based on infrared imaging and researching methods of thermal image [J]. Microcomputer Information, 2006(1): 98-99. [69] Calderón R, NavasCortés J A, ZarcoTejada P J. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas[J]. Remote Sensing, 2015, 7(5): 5584-5610. [70] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176. Huang Shuangping, Sun Chao, Qi Long, et al. Rice panicle blast identification method based on deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 169-176. [71] 刘娟娟. 基于红外和可见光图像融合的苹果缺陷检测[D]. 南昌: 华东交通大学, 2012. Liu Juanjuan. The defects detection based on the apples infrared and visible images fusion [D]. Nanchang: East China Jiaotong University, 2012. [72] 周其显. 苹果早期机械损伤的红外热成像检测研究[D]. 南昌: 华东交通大学, 2011. Zhou Qixian. Reserch on infrared thermography technique for detecting early chanical damage in apples [D]. Nanchang: East China Jiaotong University, 2011. [73] Farokhzad S, Modaress Motlagh A, Ahmadi Moghadam P, et al. Application of infrared thermal imaging technique and discriminant analysis methods for nondestructive identification of fungal infection of potato tubers [J]. Journal of Food Measurement and Characterization, 2020, 14(1): 88-94. [74] Kheiralipour K, Ahmadi H, Rajabipour A, et al. Classifying healthy and fungal infectedpistachio kernel by thermal imaging technology [J]. International Journal of Food Properties, 2015, 18(1): 93-99. [75] Chelladurai V, Jayas D S, White N D G. Thermal imaging for detecting fungal infection in stored wheat [J]. Journal of Stored Products Research, 2010, 46(3): 174-179. [76] Raza S A, Prince G, Clarkson J P, et al. Automatic detection of diseased tomato plants using thermal and stereo visible light images[J]. PloS one, 2015, 10(4): e0123262. [77] Jafari M, Minaei S, Safaie N. Detection of presymptomatic rose powderymildew and graymold diseases based on thermal vision[J]. Infrared physics and technology, 2017, 85: 170-183. [78] 朱文静, 陈华, 李林, 等. 基于红外热成像边缘检测算法的小麦叶锈病分级研究[J]. 农业机械学报, 2019, 50(4): 36-41. Zhu Wenjing, Chen Hua, Li Lin, et al. Grading of wheat leaf rust based on edge detection of infrared thermal imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 36-41. [79] Lopez M B, delBlanco C R, Garcia N. Detecting exerciseinduced fatigue using thermal imaging and deep learning [C]. 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2017: 1-6. [80] Cho Y, BianchiBerthouze N, Julier S J. DeepBreath: Deep learning of breathing patterns for automatic stress recognition using lowcost thermal imaging in unconstrained settings [C]. 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 2017: 456-463. |
[1] | 杨文姬, 胡文超, 赵应丁, 钱文彬. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115. |
[2] | 郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166. |
[3] | 赵越, 赵辉, 姜永成, 任东悦, 李阳, 卫勇. 基于深度学习的马铃薯叶片病害检测方法#br#
#br#
[J]. 中国农机化学报, 2022, 43(10): 183-189. |
[4] | 王聪;姜舒文;黄坤;邵小东;杨启凡;陈天恩;. 机器学习在农产品供应链关键环节中的应用进展研究综述[J]. 中国农机化学报, 2021, 42(5): 182-190. |
[5] | 李健;熊琦;胡雅婷;. 基于改进AdaBoost算法对环柄菇毒性判别研究[J]. 中国农机化学报, 2021, 42(3): 72-77. |
[6] | 王宝聚, 兰玉彬, 陈蒙蒙, 柳宝虎, 王国宾, 刘海涛, . 机器学习在无人农场中的应用现状与展望[J]. 中国农机化学报, 2021, 42(10): 186-192+217. |
[7] | 王聃;柴秀娟;. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180. |
[8] | 卢柳江;匡迎春;陈兰鑫;李国睿;. 基于级联AdaBoost分类器的农作物虫害图像识别研究[J]. 中国农机化学报, 2019, 40(8): 127-131. |
[9] | 霍迎秋;张晨;李宇豪;智文涛;张炯;刘景玲;. 高光谱图像结合机器学习方法无损检测猕猴桃[J]. 中国农机化学报, 2019, 40(4): 71-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296