[1]
Wang T, Xu X, Wang C, et al. From smart farming towards unmanned farms: A new mode of agricultural production [J]. Agriculture, 2021, 11.
[2]
Gollin, Douglas, Parente, et al. The role of agriculture in development [J]. American Economic Review, 2002.
[3]
Hunter M C, Smith R G, Schipanski M E, et al. Agriculture in 2050: Recalibrating targets for sustainable intensification [J]. Bioscience, 2017, 67(4): 386-391.
[4]
杨文会. 农业劳动力老龄化对农业劳动生产率的影响研究[D]. 北京: 北京交通大学, 2019.〖BP(〗
Yang Wenhui. A study on the impact of agriculture labor force aging on agriculture labor productivity [D]. Beijing: Beijing Jiaotong University, 2019.〖BP)〗
[5]
Akbar M O, Khan M, Ali M J, et al. IoT for development of smart dairy farming [J]. Journal of Food Quality, 2020(2): 1-8.
[6]
Ramli M R, Daely P T, Kim D S, et al. IoTbased adaptive network mechanism for reliable smart farm system [J]. Computers and Electronics in Agriculture, 2020, 170: 105287.
[7]
Takahashi K, Kim K, Ogata T, et al. Toolbody assimilation model considering grasping motion through deep learning [J]. Robotics and Autonomous Systems, 2017, 91: 115-127.
[8]
Gastaldo P, Pinna L, Seminara L, et al. A tensorbased approach to touch modality classification by using machine learning [J]. Robotics and Autonomous Systems, 2015, 63: 268-278.
[9]
〖JP3〗Kamilaris A, Kartakoullis A, PrenafetaBoldú F X. A review on the practice of big data analysis in agriculture [J]. Computers and Electronics in Agriculture, 2017, 143: 23-37.
[10]
Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review [J]. Computers and Electronics in Agriculture, 2018, 151: 61-69.
[11]
Konstantinos L, Patrizia B, Dimitrios M, et al. Machine learning in agriculture: A review [J]. Sensors, 2018, 18(8): 2674.
[12]
Zhang Q, Yang L T, Chen Z, et al. A survey on deep learning for big data [J]. Information Fusion, 2018, 42: 146-157.
[13]
Kong L, Zhang Y, Ye Z Q, et al. CPC: Assess the proteincoding potential of transcripts using sequence features and support vector machine [J]. Nucleic Acids Research, 2007, 35(Web Server issue): W345-9.
[14]
Kang J, Schwartz R, Flickinger J, et al. Machine learning approaches for predicting radiation therapy outcomes: A Clinicians perspective [J]. International Journal of Radiation Oncology Biology Physics, 2015, 93(5): 1127-1135.
[15]
朱煜, 赵江坤, 王逸宁, 等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报, 2016, 42(6): 848-857.〖BP(〗
Zhu Yu, Zhao Jiangkun, Wang Yining, et al. A review of human action recognition based on deep learning [J]. Acta Automatica Sinica, 2016, 42(6): 848-857.〖BP)〗
[16]
Cramer S, Kampouridis M, Freitas A A, et al. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives [J]. Expert Systems with Applications, 2017.
[17]
Huang H, Deng J, Lan Y, et al. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery [J]. PloS One, 2018, 13(4): e0196302.
[18]
Mw A, Fj B, Gd C. Remote sensing for agricultural applications: A metareview [J]. Remote Sensing of Environment, 2019.
[19]
Kamilaris, Andreas, Pren af etaBoldu, et al. Deep learning in agriculture: A survey [J]. Computers & Electronics in Agriculture, 2018.
[20]
张彦军, 牛曼丽, 刘利永, 等. 中国无人农场的产生与发展初探[J]. 农业工程技术, 2020, 40(21): 27-28.
[21]
王皓萱, 郝万君, 夏以诚, 等. 基于LoRa技术的温室农作物自动化培育系统设计[J]. 单片机与嵌入式系统应用, 2021, 21(2): 71-74, 78.〖BP(〗
Wang Haoxuan, Hao Wanjun, Xia Yicheng, et al. Design of greenhouse crops automatic cultivation system based on LoRa technology [J]. Microcontrollers & Embedded Systems, 2021, 21(2): 71-74, 78.〖BP)〗
[22]
Wolfert S, Ge L, Verdouw C, et al. Big data in smart farming—A review [J]. Agricultural Systems, 2017, 153: 69-80.
[23]
Samuel A L. Some studies in machine learning using the game of checkers [J]. IBM Journal of research and development, 1959, 3(3): 210-229.
[24]
Ouf N S. A review on the relevant applications of machine learning in agriculture [J]. IJIREEICE, 2018, 6(8): 1-17.
[25]
Mishra S, Mishra D, Santra G D, et al. Applications of machine learning techniques in agricultural crop production: A review paper [J]. Indian Journal of Science and Technology, 2016, 9(38): 1-14.
[26]
牟文芊. 机器学习技术在现代农业中的应用[J]. 电子技术与软件工程, 2018(18): 256-257.
[27]
郭祥云, 台海江. 深度学习在大田种植中的应用及展望[J]. 中国农业大学学报, 2019, 24(1): 125-135.〖BP(〗
Guo Xiangyun, Tai Haijiang. Current situation and prospect of deep learning application in field planting [J]. Journal of China Agricultural University, 2019, 24(1): 125-135.〖BP)〗
[28]
余滨, 李绍滋, 徐素霞, 等. 深度学习:开启大数据时代的钥匙[J]. 工程研究—跨学科视野中的工程, 2014(3): 233-243.〖BP(〗
Yu Bin, Li Shaozi, Xu Suxia, et al. Deep learning: A key of stepping into the era of big data [J]. Journal of Engineering Studies, 2014(3): 233-243.〖BP)〗
[29]
Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009.
[30]
傅隆生, 宋珍珍, 王东, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 111-126.〖BP(〗
Fu Longsheng, Song Zhenzhen, Wang Dong, et al. Applications and research progress of deep learning in agriculture [J]. Journal of China Agricultural University, 2020, 25(2): 111-126.〖BP)〗
[31]
Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436.
[32]
段艳杰, 吕宜生, 张杰, 等. 深度学习在控制领域的研究现状与展望[J]. 自动化学报, 2016, 42(5): 643-654.〖BP(〗
Duan Yanjie, Lü Yisheng, Zhang Jie, et al. Deep learning for control: The state of the art and prospects [J]. Acta Automatica Sinica, 2016, 42(5): 643-654.〖BP)〗
[33]
Andrea C C, Daniel B B M, Misael J. Precise weed and maize classification through convolutional neuronal networks [C]. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). IEEE, 2017.
[34]
姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11): 30-38.〖BP(〗
Jiang Honghua, Wang Pengfei, Zhang Zhao, et al. Fast identification of field weeds based on deep convolutional network and binary hash code [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 30-38.〖BP)〗
[35]
Flores P, Zhang Z, Mathew J, et al. Distinguishing volunteer corn from soybean at seedling stage using images and machine learning [J]. Smart Agriculture, 2020, 2(3): 61-74.
[36]
孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51(12): 238-245, 303.〖BP(〗
Meng Qingkuan, Zhang Man, Yang Xiaoxia, et al. Recognition of maize seedling and weed based on light weight convolution and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 238-245, 303.〖BP)〗
[37]
刘慧力, 贾洪雷, 王刚, 等. 基于深度学习与图像处理的玉米秧苗茎秆识别方法与试验[J]. 农业机械学报, 2020, 51(4): 207-215.〖BP(〗
Liu Huili, Jia Honglei, Wang Gang, et al. Method and experiment of maize(Zea Mays L.) stems recognition based on deep learning and image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 207-215.〖BP)〗
[38]
应瑞瑶, 朱勇. 农业技术培训方式对农户农业化学投入品使用行为的影响——源自实验经济学的证据[J]. 中国农村观察, 2015(1): 50-58, 83.
[39]
Pantazi X E, Tamouridou A A, Alexandridis T K, et al. Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy [J]. Computers and Electronics in Agriculture, 2017, 137: 130-137.
[40]
Ebrahimi M A, Khoshtaghaza M H, Minaei S, et al. Visionbased pest detection based on SVM classification method [J]. Computers and Electronics in Agriculture, 2017, 137: 52-58.
[41]
Chung C L, Huang K J, Chen S Y, et al. Detecting Bakanae disease in rice seedlings by machine vision [J]. Computers and electronics in agriculture, 2016, 121: 404-411.
[42]
张银松. 基于深度学习的粘虫板图像害虫识别与计数[D]. 徐州: 中国矿业大学, 2019.〖BP(〗
Zhang Yinsong. Pest identification and counting of sticky image based on deep learning [D]. Xuzhou: China University of Mining and Technology, 2019.〖BP)〗
[43]
刘志勇, 张丽秀, 钟婷婷, 等. 基于改进leNet-5的番茄病虫害识别的研究[J]. 赣南师范大学学报, 2020, 41(6): 76-80.〖BP(〗
Liu Zhiyong, Zhang Lixiu, Zhong Tingting, et al. Study on tomato pest identification based on improved leNet-5 [J]. Journal of Gannan Normal University, 2020, 41(6): 76-80.〖BP)〗
[44]
Moshou D, Bravo C, Wahlen S, et al. Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and selforganising maps [J]. Precision Agriculture, 2006, 2(3): 149-164.
[45]
You J, Li X, Low M, et al. Deep gaussian process for crop yield prediction based on remote sensing data [C]. Proceedings of the ThirtyFirst AAAI Conference on Artificial Intelligence, 2017.
[46]
Ali I, Awkwell F C, Dwyer E, et al. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(7): 3254-3264.
[47]
于红, 冯艳红, 李晗, 等. 渔业标准体系化服务与决策系统研究[J]. 大连海洋大学学报, 2019, 34(2): 111-117.
Yu Hong, Feng Yanhong, Li Han, et al. Establishment of a systematic service and assistant decisionmaking system for fishery standard [J]. Journal of Dalian Ocean University, 2019, 34(2): 111-117.
〖HJ1.5mm〗
[48]
王文成, 蒋慧, 乔倩, 等. 基于深度学习的鱼类识别与检测的算法研究[J]. 信息技术与网络安全, 2020(8): 57-61.
〖BP(〗
Wang Wencheng, Jiang Hui, Qiao Qian, et al. Research on fish recognition and detection algorithm based on deep learning [J]. Information Technology and Network Security, 2020(8): 57-61.〖BP)〗
[49]
袁红春, 张硕. 基于Faster RCNN和图像增强的水下鱼类目标检测方法[J]. 大连海洋大学学报, 2020, 35(4): 612-619.
Yuan Hongchun, Zhang Shuo. Detection of underwater fish based on Faster RCNN and image enhancement [J]. Journal of Dalian Ocean University, 2020, 35(4): 612-619.
[50]
李庆忠, 李宜兵, 牛炯. 基于改进YOLO和迁移学习的水下鱼类目标实时检测[J]. 模式识别与人工智能, 2019, 32(3): 193-203.
Li Qingzhong, Li Yibing, Niu Jiong. Realtime detection of underwater fish based on improved YOLO and transfer learning [J]. Pattern Recognition and Artificial Intelligence, 2019, 32(3): 193-203.
[51]
王烨. 基于深度学习的鱼类识别研究[D]. 上海: 上海海洋大学, 2020.〖BP(〗
Wang Ye. Research on fish recognition based on deep learning [D]. Shanghai: Shanghai Ocean University, 2020. 〖BP)〗
[52]
〖JP3〗Hansen M F, Smith M L, Smith L N, et al. Towards onfarm pig face recognition using convolutional neural networks [J]. Computers in Industry, 2018, 98: 145-152.
[53]
Morales I R, Cebrián D R, Blanco E F, et al. Early warning in egg production curves from commercial hens: A SVM approach [J]. Computers and electronics in agriculture, 2016, 121: 169-179.
[54]
Alonso J, ngel Rodríguez Castaón, Bahamonde A. Support vector regression to predict carcass weight in beef cattle in advance of the slaughter [J]. Computers and Electronics in Agriculture, 2013, 91: 116-120.
[55]
Zhou C, Lin K, Xu D, et al. Near infrared computer vision and neurofuzzy modelbased feeding decision system for fish in aquaculture [J]. Computers & Electronics in Agriculture, 2018, 146: 114-124.
[56]
赵建. 循环水养殖游泳型鱼类精准投喂研究[D]. 杭州: 浙江大学, 2017.〖BP(〗
Zhao Jian. Precise feeding for the swimming fish in recirculating aquaculture system [D]. Hangzhou: Zhejiang University, 2017.〖BP)〗
|