[1]
徐可, 李怀民, 曹卫星. 基于RGB-D多源图像融合的农田麦草识别方法研究[C]. 第十九届中国作物学会学术年会, 2020.
[2]
李雪, 顾莉丽, 李瑞. 我国粮食主产区粮食生产生态效率评价研究[J]. 中国农机化学报, 2022, 43(2): 205-213.
Li Xue, Gu Lili, Li Rui. Study on evaluation of ecoefficiency of grain production in major grainproducing areas of China [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 205-213.
[3]
刘莫尘, 高甜甜, 马宗旭, 等. 融合MSRCR算法和YOLOv4-tiny的田间环境玉米杂草目标检测模型[J]. 农业机械学报, 2022, 53(2): 246-255, 335.
Liu Mochen, Gao Tiantian, Ma Zongxu, et al. Target detection model of corn weeds in field environment combining MSRCR algorithm and YOLOv4-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 246-255, 335.
[4]
杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181.
Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181.
[5]
袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334.
Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334.
[6]
Fang Fen, Li Liyuan, Zhu Hongyuan. Combining faster R-CNN and modeldriven clustering for elongated object detection [J]. IEEE Transactions on Image Processing, 2020, 29(1): 2052-2065.
[7]
Quan Longzhe, Wu Bing, Mao Shouren. An instance segmentationbased method to obtain the leaf age and plant centre of weeds in complex field environments [J]. Sensors, 2021, 21(10): 3389.
[8]
张学军, 黄爽, 靳伟. 基于改进Faster R-CNN的农田残膜识别方法[J]. 湖南大学学报(自然科学版), 2021, 48(8): 161-168.
Zhang Xuejun, Huang Shuang, Jin Wei. Identification method of agricultural film residue based on improved Faster R-CNN [J]. Journal of Hunan University (Natural Sciences), 2021, 48(8): 161-168.
[9]
李开敬, 许燕, 周建平, 等. 基于Faster R-CNN和数据增强的棉田苗期杂草识别方法[J]. 新疆大学学报(自然科学版), 2021, 38(4): 450-456.
Li Kaijing, Xu Yan, Zhou Jianping, et al. Cotton field seedling weed identification method based on Faster R-CNN and data enhancement [J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2021, 38(4): 450-456.
[10]
亢洁, 刘港, 郭国法. 基于多尺度融合模块和特征增强的杂草检测方法[J]. 农业机械学报, 2022, 53(4): 254-260.
Kang Jie, Liu Gang, Guo Guofa. Weed detection based on multiscale fusion module and feature enhancement [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 254-260.
[11]
孙俊, 何小飞, 谭文军. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165.
Sun Jun, He Xiaofei, Tan Wenjun. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 159-165.
[12]
李彧, 余心杰, 郭俊先. 基于全卷积神经网络方法的玉米田间杂草识别[J]. 江苏农业科学, 2022, 50(6): 93-100.
[13]
温德圣, 许燕, 周建平. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J]. 中国科技论文, 2020, 15(3): 287-292.
Wen Desheng, Xu Yan, Zhou Jianping. Weed identification method based on deep convolutional neural network and color migration under the influence of natural illumination [J]. China Sciencepaper, 2020, 15(3): 287-292.
[14]
樊湘鹏, 周建平, 许燕. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[15]
Fu Lifang, Lü Xingchen, Wu Qiufeng. Field weed recognition based on an improved VGG with inception module [J]. International Journal of Agricultural and Environmental Information Systems, 2020, 11(2): 1-13.
[16]
Jiang Honghua, Zhang Chuanyin, Qiao Yongliang. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J]. Computers and Electronics in Agriculture, 2020, 174: 105450.
[17]
Qin Yueyan, Cao Jiangtao, Ji Xiaofei. Fire detection method based on depthwise separable convolution and YOLOv3 [J]. International Journal of Automation and Computing, 2021, 18(2): 300-310.
[18]
Farooq A, Hu Jiankun, Jia Xiuping. Analysis of spectral bands and spatial resolutions for weed classification via deep convolutional neural network [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 183-187.
[19]
Vaswani A, Shazeer N, Parmar N. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017.
[20]
Zang Haixiang, Xu Ruiqi, Cheng Lilin. Residential load forecasting based on LSTM fusing selfattention mechanism with pooling [J]. Energy, 2021, 229: 148-156.
|