[1] 邹剑平, 王旭. 基于品牌竞争力评价指标体系的普洱茶竞争力研究[J]. 云南农业大学学报(社会科学), 2023, 17(3): 47-54.
Zou Jianping, Wang Xu. Research on the construction of brand competitiveness evaluation system of Puer tea [J]. Journal of Yunnan Agricultural University (Social Sciences), 2023, 17(3): 47-54.
[2] 雷嘉兴, 王伟. 二维傅里叶图像预处理对DNN网络的影响研究[J]. 科学技术创新, 2022(11): 61-64.
Lei Jiaxing, Wang Wei.Research on the effect of image preprocessing with 2D Fourier on DNN network [J]. Scientific and Technological Innovation, 2022(11): 61-64
[3] 平昱恺, 黄鸿云, 江贺, 等. 目标检测模型的决策依据与可信度分析[J]. 软件学报, 2022, 33(9): 3391-3406.
Ping Yukai, Huang Hongyun, Jiang He, et al. Decision basis and credibility analysis of object detection models [J]. Journal of Software, 2022, 33(9): 3391-3406
[4] 史春天, 曾艳阳, 侯守明. 群体智能算法在图像分割中的应用综述[J].计算机工程与应用, 2021, 57(8): 36-47.
Shi Chuntian, Zeng Yanyang, Hou Shouming. Summary of application of swarm intelligence algorithms in image segmentation [J]. Computer Engineering and Applications, 2021, 57(8): 36-47
[5] 桂泽春, 赵思健. 人工智能在农业风险管理中的应用研究综述[J]. 智慧农业(中英文), 2023, 5(1): 82-98.
Gui Zechun, Zhao Sijian. Research application of artificial intelligence in agricultural risk management: A review [J]. Smart Agriculture, 2023, 5(1): 82-98
[6] 袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334.
Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334
[7] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[8] Jan B, Farman H, Khan M, et al. Deep learning in big data analytics: A comparative study [J]. Comp.Electr.Eng, 2019, 75: 275-287.
[9] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810.
Sun Zhijun, Xue Lei, Xu Yangming, et al. Overview of deep learning [J]. Application Research of Computers, 2012, 29(8): 2806-2810.
[10] 王大庆, 禄琳, 于兴龙, 等. 基于深度迁移学习的EfficientNet玉米叶部病害识别[J]. 东北农业大学学报, 2023, 54(5): 66-76.
Wang Daqing, Lu Lin, Yu Xinglong, et al. Maize leaf diseases identification using EfficientNet based on deeptransfer learning [J]. Journal of Northeast Agricultural University, 2023, 54(5): 66-76.
[11] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201.
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201.
[12] 赵嘉威, 田光兆, 邱畅, 等. 基于改进YOLOv4算法的苹果叶片病害检测方法[J]. 江苏农业科学, 2023, 51(9): 193-199.
Zhao Jiawei, Tian Guangzhao, Qiu Chang, et al. Detection method of apple leaf diseases based on improved YOLOv4 algorithm [J]. Jiangsu Agricultural Sciences, 2023, 51(9): 193-199.
[13] 邹珺淏, 任酉贵, 冷芳玲, 等. LWYOLOv7SAR: 轻量SAR图像目标检测方法[J/OL]. 小型微型计算机系统:1-9[2023-11-06].
Zou Junhao, Ren Yougui, Leng Fangling, et al. LWYOLOv7SAR: Lightweight SAR image object detection method [J/OL]. Journal of Chinese Computer Systems: 1-9[2023-11-06].
[14] 刘诗怡, 胡滨, 赵春. 基于改进YOLOv7的黄瓜叶片病虫害检测与识别[J]. 农业工程学报, 2023, 39(15): 163-171.
Liu Shiyi, Hu Bin, Zhao Chun. Detection and identification of cucumber leaf diseases based on improved YOLOv7[J].Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 163-171.
[15] 李伟豪, 詹炜, 周婉, 等. 轻量型Yolov7-TSA网络在茶叶病害检测识别中的研究与应用[J]. 河南农业科学, 2023, 52(5): 162-169.
Li Weihao, Zhan Wei, Zhou Wan, et al. Research and application of lightweight Yolov7-TSA network in tea disease detection and identification [J]. Journal of Henan Agricultural Sciences, 2023, 52(5): 162-169.
[16] 乔琛, 韩梦瑶, 高苇, 等. 基于FasterNAMYOLO的黄瓜霜霉病菌孢子检测[J]. 农业机械学报, 2023, 54(12): 288-299.
Qiao Chen, Han Mengyao, Gao Wei, et al. Quantitative detection of cucumber downy mildew spores at multiscale based on FasterNAMYOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 288-299.
[17] 熊梦园, 詹炜, 桂连友, 等. 基于ResNet模型的玉米叶片病害检测与识别[J]. 江苏农业科学, 2023, 51(8): 164-170.
Xiong Mengyuan, Zhan Wei, Gui Lianyou, et al. Detection and identification of corn leaf diseases based on ResNet model [J]. Jiangsu Agricultural Sciences, 2023, 51(8): 164-170.
[18] 毛锐, 张宇晨, 王泽玺, 等. 利用改进FasterRCNN识别小麦条锈病和黄矮病[J]. 农业工程学报, 2022, 38(17): 176-185.
Mao Rui, Zhang Yuchen, Wang Zexi, et al. Recognizing stripe rust and yellow dwarf of wheat using improved FasterRCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 176-185.
[19] 曹藤宝, 张欣, 陈孝玉龙, 等. 融合空间注意力机制和DenseNet的玉米病害分类方法[J]. 无线电工程, 2022, 52(10): 1710-1717.
Cao Tengbao, Zhang Xin, Chen Xiaoyulong, et al. Maize disease classification method based on spatial attention mechanism and DenseNet [J]. Radio Engineering, 2022, 52(10): 1710-1717.
[20] 徐振南, 王建坤, 胡益嘉, 等. 基于MobileNetV3的马铃薯病害识别[J]. 江苏农业科学, 2022, 50(10): 176-182.
Xu Zhennan, Wang Jiankun, Hu Yijia, et al. Potato disease recognition based on MobileNetV3 [J]. Jiangsu Agricultural Sciences, 2022, 50(10): 176-182.
[21] 李好, 邱卫根, 张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J]. 计算机工程与应用, 2022, 58(12): 260-268.
Li Hao, Qiu Weigen, Zhang Lichen. Improved ShuffleNet V2 for lightweight crop disease identification [J]. Computer Engineering and Applications, 2022, 58(12): 260-268.
[22] 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179.
Sun Fenggang, Wang Yunlu, Lan Peng, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning [J].Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 171-179.
[23] Tian M, Liao Z H. Research on flower image classification method based on YOLOv5 [J]. Journal of Physics: Conference Series, 2021, 2024(1).
[24] 许伟, 熊卫华, 姚杰, 等. 基于改进YOLOv3算法在垃圾检测上的应用[J]. 光电子·激光, 2020, 31(9): 928-938.
Xu Wei, Xiong Weihua, Yao Jie,et al. Application of garbage detection based on improved YOLOv3 algorithm [J]. Journal of Optoelectronics·Laser, 2020, 31(9): 928-938.
[25] Xu X W, Wang J W, Zhong B F, et al. Deep learningbased tool wear prediction and its application for machining process using multiscale feature fusion and channel attention mechanism [J]. Measurement, 2021, 177: 109254.
[26] Wang Q L, Wu B G, Zhu P F, et al. ECANet: Efficient channel attention for deep convolutional neural networks [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 11531-11539.
[27] 张秀花, 静茂凯, 袁永伟, 等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报, 2022, 38(1): 221-229.
Zhang Xiuhua, Jing Maokai, Yuan Yongwei, et al. Tomato seedling classification detection using improved YOLOv3-Tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 221-229.
[28] 李永上, 马荣贵, 张美月. 改进YOLOv5s+DeepSORT的监控视频车流量统计[J]. 计算机工程与应用, 2022, 58(5): 271-279.
Li Yongshang, Ma Ronggui, Zhang Meiyue. Traffic monitoring video vehicle volume statistics method based on improved YOLOv5s+DeepSORT [J]. Computer Engineering and Applications, 2022, 58(5): 271-279.
[29] 文斌, 曹仁轩, 杨启良, 等. 改进YOLOv3算法检测三七叶片病害[J]. 农业工程学报, 2022, 38(3): 164-172.
Wen Bin, Cao Renxuan, Yang Qiliang, et al. Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 164-172.
|